Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (10): 1159-1166.DOI: 10.15541/jim20240062
Special Issue: 【能源环境】热电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
SU Haojian1,2(), ZHOU Min1(
), LI Laifeng1
Received:
2024-02-02
Revised:
2024-04-23
Published:
2024-10-20
Online:
2024-05-16
Contact:
ZHOU Min, professor. E-mail: mzhou@mail.ipc.ac.cnAbout author:
SU Haojian (1995-), male, PhD candidate. E-mail: suhaojian19@mails.ucas.ac.cn
Supported by:
CLC Number:
SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping[J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166.
Fig. 1 Schematic diagrams of preparative principles (a) Raw material filling in the reaction chamber; (b) Equipment for high gravity field assisted combustion synthesis
Fig. 4 Relationship of entropy change (∆S) and x in Sn0.70Ge0.15Pb0.15Te1-2xSexSx ∆S1: Entropy change of SnTe; ∆S2: Entropy change of Sn0.85Ge0.15Te; R: Gas constant, 8.314 J·mol-1·K-1
Fig. 5 Electrical transport performance for bulk SnTe, Sn0.85Ge0.15Te, Sn0.70Ge0.15Pb0.15Te and Sn0.70Ge0.15Pb0.15Te1-2xSexSx (x=0.05, 0.07, 0.10) samples (a, c, d) Temperature dependence of (a) Seebeck coefficient, (c) electrical conductivity and (d) power factor; (b) Dependence of Seebeck coefficient on the entropy change
Fig. 6 Thermal transport performance for bulk SnTe, Sn0.85Ge0.15Te, Sn0.70Ge0.15Pb0.15Te and Sn0.70Ge0.15Pb0.15Te1-2xSexSx (x=0.05, 0.07, 0.10) samples (a) Temperature dependence of thermal conductivity; (b) Lattice thermal conductivities at 298, 573 and 873 K as a function of the number of alloying elements
Fig. 7 Microstructure of the sample Sn0.70Ge0.15Pb0.15Te0.80Se0.10S0.10 (a) Low magnification TEM image; (b) HRTEM image of the selected area 1 in (a); (c) Inverse fast Fourier transform (IFFT) and geometric phase analysis (GPA) images of the selected area 2 in (b)
Fig. 8 Temperature dependence of ZT for bulk SnTe, Sn0.85Ge0.15Te, Sn0.70Ge0.15Pb0.15Te, Sn0.70Ge0.15Pb0.15Te1-2xSexSx (x=0.05, 0.07, 0.10), and samples in literature[32-33] Colorful figure is available on website
[1] | ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1606884. |
[2] | WANG H, LALONDE A D, PEI Y Z, et al. The criteria for beneficial disorder in thermoelectric solid solutions. Advanced Functional Materials, 2013, 23(12): 1586. |
[3] | HONG M, CHEN Z G, YANG L, et al. Realizing ZT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Advanced Materials, 2018, 30(11): 1705942. |
[4] | ZHOU Y M, ZHAO L D. Promising thermoelectric bulk materials with 2D structures. Advanced Materials, 2017, 29(45): 1702676. |
[5] | SU H J, MIAO Z C, PENG Y, et al. SnTe thermoelectric materials with low lattice thermal conductivity synthesized by a self- propagating method under a high-gravity field. Physical Chemistry Chemical Physics, 2022, 24(47): 29186. |
[6] | ZHAO L D, HAO S Q, LO S H, et al. High thermoelectric performance via hierarchical compositionally alloyed nanostructures. Journal of American Chemistry Society, 2013, 135(19): 7364. |
[7] | BANIK A, VISHAL B, PERUMAL S, et al. The origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy & Environmental Science, 2016, 9(6): 2011. |
[8] | SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of American Chemistry Society, 2011, 133(20): 7837. |
[9] | LIU H L, SHI X, ZHANG L L, et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11(5): 422. |
[10] | LIU R H, CHEN H Y, ZHAO K P, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 2017, 29(38): 1702712. |
[11] | CHEN Z W, JIAN Z Z, LI W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768. |
[12] | PEI Y Z, GIBBS Z M, GLOSKOVSKII A, et al. Optimum carrier concentration in n-type PbTe thermoelectrics. Advanced Energy Materials, 2014, 4(13): 1400486. |
[13] | LI W, ZHENG L L, GE B H, et al. Promoting SnTe as an eco- friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Advanced Materials, 2017, 29(17): 1605887. |
[14] | TANG J, YAO Z, CHEN Z, et al. Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Materials Today Physics, 2019, 9: 100091. |
[15] | JIANG Q H, HU H S, YANG J Y, et al. High thermoelectric performance in SnTe nanocomposites with all-scale hierarchical structures. ACS Applied Materials & Interfaces, 2020, 12(20): 23102. |
[16] | WU H J, CHANG C, FENG D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high- solubility MnTe. Energy & Environmental Science, 2015, 8(11): 3298. |
[17] | TAN X J, SHAO H Z, HE J, et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg). Physical Chemistry Chemical Physics, 2016, 18(10): 7141. |
[18] | TAN G J, SHI F Y, DOAK J W, et al. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy & Environmental Science, 2015, 8(1): 267. |
[19] | TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. Journal of American Chemistry Society, 2015, 137(15): 5100. |
[20] | PEI Y Z, ZHENG L L, LI W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Advanced Electronic Materials, 2016, 2(6): 1600019. |
[21] | ZHAO L D, ZHANG X, WU H J, et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of American Chemistry Society, 2016, 138(7): 2366. |
[22] | WEI P X, LIAO C E, WU H A, et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Advanced Materials, 2020, 32(12): 1906457. |
[23] | SHAFEIE S, GUO S, HU Q, et al. High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 2015, 118(18): 105. |
[24] | HU L, ZHANG Y, WU H, et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 2018, 8(29): 1802116. |
[25] | PEI Y Z, LALONDE A D, WANG H, et al. Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 2012, 5(7): 7963. |
[26] | BLACHNIK R, IGEL R. Thermodynamic properties of IV-VI compounds lead chalcogenides. Zeitschrift Fur Naturforschung B, 1974, 29(7): 633. |
[27] | ZHANG Q, GUO Z, WANG R Y, et al. High-performance thermoelectric material and module driven by medium-entropy engineering in SnTe. Advanced Functional Materials, 2022, 32(35): 2205458. |
[28] | SU H J, HAN Y M, XIE L C, et al. Fast fabrication of SnTe via a non-equilibrium method and enhanced thermoelectric properties by medium-entropy engineering. Journal of Materials Chemistry C, 2023, 11(16): 5363. |
[29] | KIM H S, GIBBS Z M, TANG Y, et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3(4): 041506. |
[30] | YANG Q, QIU P, SHI X, et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021, 36(4): 347. |
[31] | KIM Y M, CHUNG K, YOO J, et al. Effect of fine boron powders prepared with a self-propagating high temperature synthesis on flux pinning properties of the MgB2/Fe composite wires. Journal of Alloys and Compounds, 2009, 485(1): 44. |
[32] | WANG L J, CHANG S Y, ZHENG S Q, et al. Thermoelectric performance of Se/Cd codoped SnTe via microwave solvothermal method. ACS Applied Materials Interfaces, 2017, 9(27): 612. |
[33] | ROYCHOWDHURY S, BISWAS R K, DUTTA M. Phonon localization and entropy-driven point defects lead to ultralow thermal conductivity and enhanced thermoelectric performance in (SnTe)1-2x(SnSe)x(SnS)x. ACS Energy Letters, 2019, 4(7): 1658. |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[3] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[4] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[5] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[6] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[7] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[8] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[9] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[10] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[11] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[12] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[13] | YANG Dongwang, LUO Tingting, SU Xianli, WU Jinsong, TANG Xinfeng. Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process [J]. Journal of Inorganic Materials, 2021, 36(9): 991-998. |
[14] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[15] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||