Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 708-716.DOI: 10.15541/jim20220742
Special Issue: 【生物材料】骨骼与齿类组织修复(202409)
• RESEARCH LETTER • Previous Articles
WU Rui1(), ZHANG Minhui1, JIN Chenyun1, LIN Jian1,2(), WANG Deping1,2
Received:
2022-12-06
Revised:
2022-12-26
Published:
2023-01-18
Online:
2023-01-18
Contact:
LIN Jian, professor. E-mail: lin_jian@tongji.edu.cn.About author:
WU Rui (1998-), female, Master candidate. E-mail: 2030621@tongji.edu.cn
Supported by:
CLC Number:
WU Rui, ZHANG Minhui, JIN Chenyun, LIN Jian, WANG Deping. Photothermal Core-Shell TiN@Borosilicate Bioglass Nanoparticles: Degradation and Mineralization[J]. Journal of Inorganic Materials, 2023, 38(6): 708-716.
Fig. 1 Preparation process of core-shell xTiN@58S-20B nanoparticles CTAB: Hexadecyl trimethyl ammonium bromide; TEOS: Tetraethyl orthosilicate; TBB: Tributyl borate
Fig. 3 Micrographs of xTiN@58S-20B (x=0, 0.02, 0.04) with insets showing the corresponding particle size distributions (a1, b1, c1) SEM images; (a2, b2, c2) TEM images; (a3, b3, c3) EDS spectra
Fig. 4 XRD patterns of xTiN@58S-20B (x=0, 0.02, 0.04), with gray shaded parts A, B, and C showing the glass peak areas, while b and c showing the strongest peak area of the TiN NPs
Fig. 5 Temperature rise diagrams of three samples in air with 1064 nm NIR laser at a power density of 1.0 W/cm2 for 60 s, with insets showing the infrared images correspondingly at each time point, X axial representing the radial distance extending to both sides from the sample center, and the Y axial representing the temperature
Fig. 6 Temperature changes of bioglass (a-c) Temperature changes of 58S-20B (a), 0.02TiN@58S-20B (b), 0.04TiN@58S-20B (c) irradiated by 1064 nm NIR laser at different power density (0.38, 0.42, 0.46, 0.50 W/cm2) for 3 min; (d)Temperature versus power density; (e) Heating curves of three samples under 1064 nm laser irradiation (1.0 W/cm2)
Fig. 7 pH changes and ions release of bioglass samples immersed in SBF at 37 ℃ for 7 d (a-c) pH changes within 7 d; (d-f) Ion release profiles of B, Ca, Si on the 7th day
Fig. 8 SEM images of borosilicate samples immersed in SBF for 7 d with insets showing corresponding EDS spectra (a1, b1, c1) Without NIR laser irradiation; (a2, b2, c2) With NIR laser irradiation
Fig. 10 Cell proliferation activity and cell morphology analysis of control, 58S-20B, 0.02TiN@58S-20B, and 0.04TiN@58S-20B (a) CCK-8 analysis; (b) Fluorescent images of cell morphology. Blue indicates the cell nucleus and red indicates the cell cytoskeleton
[1] |
DESCHASEAUX F, SENSÉBÉ L, HEYMANN D, et al. Mechanisms of bone repair and regeneration. Trends in Molecular Medicine, 2009, 15(9):417.
DOI PMID |
[2] |
BOSE S, ROY M, BANDYOPADHYAY A, et al. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012, 30(10):546.
DOI PMID |
[3] |
LARRY L, HENCH L L. Bioactive materials: the potential for tissue regeneration. Journal of Biomedical Materials Research, 1998, 41(4):511.
PMID |
[4] |
KOKUBO T, ITO S, HUANG Z T, et al. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. Journal of Biomedical Materials Research, 1990, 24(3):331.
DOI URL |
[5] |
HENCH L L, PASCHALL H A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. Journal of Biomedical Materials Research, 1973, 7(3):25.
DOI PMID |
[6] |
SAEID K, FRANCESCO B, SEPIDEH H, et al. Bioactive glasses entering the mainstream. Drug Discovery Today, 2018, 23(10):1700.
DOI PMID |
[7] |
SAQIB A, IMRAN F, KEFI I, et al. A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. Saudi Dental Journal, 2014, 26(1):1.
DOI PMID |
[8] | HU H R, TANG Y. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic-co- glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Applied Materials & Interfaces, 2018, 10(27):22939. |
[9] |
LI J, ZHANG C, GONG S, et al. A nanoscale photothermal agent based on a metal-organic coordination polymer as a drug-loading framework for effective combination therapy. Acta Biomaterialia, 2019, 94: 435.
DOI PMID |
[10] |
ZHANG T, JIANG Z, XVE T, et al. One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo- thermal therapy in breast cancer. Nanoscale, 2019, 11(45):21759.
DOI URL |
[11] |
CAO Z X, WANG R G, YANG F, et al. Photothermal healing of a glass fiber reinforced composite interface by gold nanoparticles. RSC Advances, 2015, 5(124):102167.
DOI URL |
[12] |
PINHEIRO A N L B, SOARES L G P, DA SILVA A C P, et al. Laser/LED phototherapy on the repair of tibial fracture treated with wire osteosynthesis evaluated by Raman spectroscopy. Lasers in Medical Science, 2018, 33: 1657.
DOI PMID |
[13] |
SMITH A M, MANCINI M C, NIE S, et al. Bioimaging: second window for in vivo imaging. Nature Nanotechnology, 2009, 4(11):710.
DOI |
[14] |
JIANG W, FU Q, WEI H, et al. TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy. Journal of Materials Science, 2019, 54: 5743.
DOI |
[15] |
GULER U, SHALAEV V M, BOLTASSEVA A, et al. Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today, 2015, 18(4):227.
DOI URL |
[16] |
ZHANG M, YAO A, LIN J, et al. Photothermally active borosilicate-based composite bone cement for near-infrared light controlled mineralisation. Materials Technology, 2021, 37(10):1243.
DOI URL |
[17] |
ZHU K P, SUN J, SONG Y E, et al. A novel hollow hydroxyapatite microspheres/chitosan composite drug carrier for controlled release. Journal of Inorganic Materials, 2016, 31(4):434.
DOI URL |
[18] |
LIANG Z, SUSHA A, CARUSO F, et al. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chemistry of Materials, 2003, 15(16):3176.
DOI URL |
[19] |
KIM J, JI E L, LEE J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society, 2006, 128(3):688.
PMID |
[20] |
BALAS F, ARCOS D, PÉREZ-PARIENTE J, et al. Textural properties of SiO2·CaO·P2O5 glasses prepared by the Sol-Gel method. Journal of Materials Research, 2001, 16(5):1345.
DOI URL |
[21] | SUN H Z, GE W J, GAO X, et al. Effect of SDT on the survival rate of endometrial cancer cells, assessed by the CCK-8 method. PLOS ONE, 2015, 11: 27. |
[22] | GAO J, YE B, WU W H, et al. Tachyzoites of toxolasma gondii enhances the cytotoxicity of Etooside (V-16) to mouse colon cancer cell ct26 in vitro. Chinese Journal of Zoonoses, 2010, 26(8):720. |
[23] |
JAQUE D, MAESTRO L M, ROSAL B D, et al. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16):9494.
DOI PMID |
[24] |
MAESTRO L M, HARO-GONZÁLEZ P, ROSAL B D, et al. Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale, 2013, 5(17):7882.
DOI PMID |
[25] |
HENCH L L, WILSON J. Surface-active biomaterials. Science, 1984, 226(4675):630.
PMID |
[26] | YAO A H, LIN J, DUAN X, et al. Formation mechanism of multilayered structure on surface of bioactive borosilicate glass. Chinese Journal of Inorganic Chemistry, 2008, 24(7):1132. |
[27] | ZHU X, SCHEIDELER L, EIBL O, et al. Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors. Journal of Biomedical Materials Research, 2006, 1(14):114. |
[1] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[2] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[3] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
[4] | YUE Quanxin, GUO Ruihua, WANG Ruifen, AN Shengli, ZHANG Guofang, GUAN Lili. 3D Core-shell Structured NiMoO4@CoFe-LDH Nanorods: Performance of Efficient Oxygen Evolution Reaction and Overall Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1254-1264. |
[5] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[6] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[7] | MA Lei, HUANG Yi, DENG Hao, YIN Hang, TIAN Qiang, YAN Minghao. Removal of Uranium (VI) from Acidic Aqueous Solution by Fluorapatite [J]. Journal of Inorganic Materials, 2022, 37(4): 395-403. |
[8] | CHEN Xiaomei, CHEN Ying, YUAN Xia. Decomposition of Cyclohexyl Hydroperoxide Catalyzed by Core-shell Material Co3O4@SiO2 [J]. Journal of Inorganic Materials, 2022, 37(1): 65-71. |
[9] | ZHU Zimin, ZHANG Minhui, ZHANG Xuanyu, YAO Aihua, LIN Jian, WANG Deping. In Vitro Mineralization Property of Borosilicate Bioactive Glass under DC Electric Field [J]. Journal of Inorganic Materials, 2021, 36(9): 1006-1012. |
[10] | LIN Ziyang, CHANG Yuchen, WU Zhangfan, BAO Rong, LIN Wenqing, WANG Deping. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement [J]. Journal of Inorganic Materials, 2021, 36(7): 745-752. |
[11] | XU Hongyi, ZHAI Dong, CAO Wanting, CHEN Zhenhua, QIAN Wenhao, CHEN Lei. Mineralization Activity of Li2Ca2Si2O7 Bioceramics [J]. Journal of Inorganic Materials, 2021, 36(7): 753-760. |
[12] | CHANG Yuchen, LIN Ziyang, XIE Xin, WU Zhangfan, YAO Aihua, YE Song, LIN Jian, WANG Deping, CUI Xu. An Injectable Composite Bone Cement Based on Mesoporous Borosilicate Bioactive Glass Spheres [J]. Journal of Inorganic Materials, 2020, 35(12): 1398-1406. |
[13] | LI Meng-Xia, LU Yue, WANG Li-Bin, HU Xian-Luo. Controlled Synthesis of Core-shell Structured Mn3O4@ZnO Nanosheet Arrays for Aqueous Zinc-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 86-92. |
[14] | LIU Ji-Tao, CHUAN Ding-Ze, YANG Ze-Bin, CHEN Xi-Liang, YAN Ting-Ting, CHEN Qing-Hua. In Vitro Remineralization of Acid-etched Bovine Enamel with Amino Acids/Hydroxyapatite Composite [J]. Journal of Inorganic Materials, 2019, 34(11): 1222-1230. |
[15] | SONG Jing-Jing, CHEN Bo, LIN Kai-Li. Core-shell Structured Hydroxyapatite/Mesoporous Silica Nanoparticle: Preparation and Application in Drug Delivery [J]. Journal of Inorganic Materials, 2018, 33(6): 623-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||