[1] SOKOLOVA V, EPPLE M.Biological and medical applications of calcium phosphate nanoparticles.Chemistry - A European Journal, 2021, 27(27): 7471.
[2] Li B, XU W F, LIAO X L.Research progress in calcium phosphate microspheres for bone defect repair.Journal of Inorganic Materials, 2014, 29(10): 1009.
[3] CHEN X, LI H Z, MA Y H,et al.Calcium phosphate-based nanomaterials: preparation, multifunction, and application for bone tissue engineering.Molecules, 2023, 28(12): 4790.
[4] NIE L, HOU M J, WANG T W,et al.Nanostructured selenium-doped biphasic calcium phosphate with in situ incorporation of silver for antibacterial applications.Scientific Reports, 2020, 10: 13738.
[5] 刘静霆, 韩颖超, 李世普, 等. 羟基磷灰石纳米粒子负载阿霉素的体外抗肿瘤活性研究. 中国生物医学工程学报, 2008(4): 572.
[6] CHEN F, HUANG P, ZHU Y J,et al.Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging.Biomaterials, 2012, 33(27): 6447.
[7] 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究. 无机材料学报, 2024, 39(3): 313.
[8] LI C Y, DING Z Y, HAN Y C.Mn-doped nano-hydroxyapatites as theranostic agents with tumor pH-amplified MRI-signal capabilities for guiding photothermal therapy.International Journal of Nanomedicine, 2023, 18: 6101.
[9] JACOBS A, RENAUDIN G, CHARBONNEL N,et al.Copper-doped biphasic calcium phosphate powders: dopant release, cytotoxicity and antibacterial properties.Materials, 2021, 14(9): 2393.
[10] ZHAO R B, REN X Y, XIE C G,et al.Towards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles.Microscopy Research and Technique, 2017, 80(3): 321.
[11] KOLLENDA S A, KLOSE J, KNUSCHKE T,et al. In vivobiodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT.Acta Biomaterialia, 2020, 109: 244.
[12] ADAMIANO A, IAFISCO M, SANDRI M,et al.On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclearin vivoimaging.Acta Biomaterialia, 2018, 73: 458.
[13] ÁLAMO P, PALLARÈS V, CÉSPEDES M V,et al.Fluorescent dye labeling changes the biodistribution of tumor-targeted nanoparticles.Pharmaceutics, 2020, 12(11): 1004.
[14] ALTINOǦLU E I, RUSSIN T J, KAISER J M,et al.Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles forin vivoimaging of human breast cancer.ACS Nano, 2008, 2(10): 2075.
[15] LLOP J, GÓMEZ-VALLEJO V, GIBSON N. Quantitative determination of the biodistribution of nanoparticles: could radiolabeling be the answer?Nanomedicine, 2013, 8(7): 1035.
[16] JEONG H J, LEE B C, AHN B C,et al.Development of drugs and technology for radiation theragnosis.Nuclear Engineering and Technology, 2016, 48(3): 597.
[17] LI P Z, WANG D D, HU J,et al.The role of imaging in targeted delivery of nanomedicine for cancer therapy.Advanced Drug Delivery Reviews, 2022, 189: 114447.
[18] WANG T T, ZHANG D, SUN D,et al.Current status ofin vivobioanalysis of nano drug delivery systems.Journal of Pharmaceutical Analysis, 2020, 10(3): 221.
[19] XIE Y F, PERERA T S H, LI F,et al.Quantitative detection method of hydroxyapatite nanoparticles based on Eu3+ fluorescent labelingin vitroandin vivo.ACS Applied Materials & Interfaces, 2015, 7(43): 23819.
[20] HAN Y C, XING Q G, WANG X Y. Quantitative detection method of rare earth doped calcium phosphate fluorescent nanometer particles in organisms: US921123B2.2024-03-05.
[21] DING Z Y, XING Q G, FAN Y R,et al.Polyacrylic acid complexes to mineralize ultrasmall europium-doped calcium phosphate nanodots for fluorescent bioimaging.Materials & Design, 2022, 221: 111008.
[22] LE A D, WEARING H J, LI D.Streamlining physiologically-based pharmacokinetic model design for intravenous delivery of nanoparticle drugs.CPT: Pharmacometrics & Systems Pharmacology, 2022, 11(4): 409.
[23] DENG L J, LIU H, MA Y S,et al.Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles.Toxicology and Applied Pharmacology, 2019, 384: 114765.
[24] LI M, ZOU P, TYNER K,et al.Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles.The AAPS journal, 2017, 19(1): 26.
[25] CHENG Y H, HE C, RIVIERE J E,et al.Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach.ACS Nano, 2020, 14(3): 3075.
[26] ZHANG S, MA X, SHA D,et al.A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine.Journal of Materials Chemistry B, 2020, 8(41): 9589.
[27] CHENG X, XU Y, ZHANG Y,et al.Glucose-targeted hydroxyapatite/indocyanine green hybrid nanoparticles for collaborative tumor therapy.ACS Applied Materials & Interfaces, 2021, 13(31): 37665.
[28] BERNIER A, TOBIAS T, NGUYEN H,et al.Vascular and blood compatibility of engineered cationic cellulose nanocrystals in cell-based assays.Nanomaterials, 2021, 11(8): 2072.
[29] SUBRAMANIAN A K, SREENIVASAGAN S, MOHANRAJ K G,et al.Assessment of toxicity of green synthesized silver nanoparticle-coated titanium mini-implants with uncoated mini-implants: comparison in an animal model study.The Journal of Contemporary Dental Practice, 2024, 24(12): 944.
[30] 高绪聪, 柴振海, 张宗鹏. 药物性肝损伤的生物标志物及其评价的研究进展. 中国药理学与毒理学杂志, 2012, 26(5): 692.
[31] KASHANI K, ROSNER M H, OSTERMANN M.Creatinine: from physiology to clinical application.European Journal of Internal Medicine, 2020, 72: 9.
[32] ALMEIDA J P M, CHEN A L, FOSTER A,et al.In vivobiodistribution of nanoparticles.Nanomedicine, 2011, 6(5): 815.
[33] 祁禹鸣, 徐铭泽, 杜步婕. 纳米材料在肾脏中的应用与清除机制. 广州医药, 2023, 54(1): 1.
[34] CHOI J S, CAO J, NAEEM M,et al. Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition.Colloids and Surfaces B: Biointerfaces, 2014, 122: 545.
[35] LEDFORD B T, WYATT T G, VANG J,et al.Effects of particle size, charge, shape, animal disease state, and sex on the biodistribution of intravenously administered nanoparticles.Particle & Particle Systems Characterization, 2023, 40(7): 2300001.
[36] MELLOR R D, UCHEGBU I F.Ultrasmall-in-nano: Why size matters.Nanomaterials, 2022, 12(14): 2476.
[37] WEI Y C, QUAN L, ZHOU C,et al.Factors relating to the biodistribution & clearance of nanoparticles & their effects onin vivoApplication.Nanomedicine, 2018, 13(12): 1495.
[38] TANG L, YANG X J, YIN Q,et al.Investigating the optimal size of anticancer nanomedicine.Proceedings of the National Academy of Sciences, 2014, 111(43): 15344.
[39] WANG J, LIU G.Imaging nano-bio interactions in the kidney: Toward a better understanding of nanoparticle clearance.Angewandte Chemie International Edition, 2018, 57(12): 3008.
[40] ZHAO Y, WANG Y, RAN F,et al.A comparison between sphere and rod nanoparticles regarding theirin vivobiological behavior and pharmacokinetics.Scientific Reports, 2017, 7(1).
[41] 董立乐. 几种硫属及稀土纳米材料的制备与癌症诊疗探索. 合肥:中国科学技术大学博士学位论文, 2020. |