Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (10): 1135-1142.DOI: 10.15541/jim20230580
• RESEARCH ARTICLE • Previous Articles Next Articles
CAI Mengyu(), LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao(
)
Received:
2023-12-18
Revised:
2024-05-06
Published:
2024-10-20
Online:
2024-05-16
Contact:
WU Hao, lecturer. E-mail: hwu@ysu.edu.cnAbout author:
CAI Mengyu (1998-), male, Master candidate. E-mail: c18503338109@163.com
Supported by:
CLC Number:
CAI Mengyu, LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Degradation Performance on Methylene Blue[J]. Journal of Inorganic Materials, 2024, 39(10): 1135-1142.
Fig. 8 Effects of co-existed substrates and water conditions on the degradation of MB by the optimized FSD/PAA system (a-d) Effects of (a) NO3-, (b) SO42-, (c) CO32-, and (d) HA on MB degradation by the optimized FSD/PAA system; (e) Effect of deionic water (DW), tap water (TW) and lake water (LW) on the degradation performance of MB by the optimized FSD/PAA system; (f) Performance of the optimized FSD/PAA system in actual wastewater; Colorful figures are available on website
Item | TW | LW | Wastewater |
---|---|---|---|
TOC/(mg·L-1) | 16.7 | 28.8 | 188.1 |
F-/(mg·L-1) | 0.1 | 0.1 | 0.2 |
Cl-/(mg·L-1) | 23.2 | 24.3 | 51.1 |
K+/(mg·L-1) | 30.9 | 35.6 | 64.4 |
Mg2+/(mg·L-1) | 16.7 | 21.4 | 96.5 |
Table S1 Characterizations of different water samples
Item | TW | LW | Wastewater |
---|---|---|---|
TOC/(mg·L-1) | 16.7 | 28.8 | 188.1 |
F-/(mg·L-1) | 0.1 | 0.1 | 0.2 |
Cl-/(mg·L-1) | 23.2 | 24.3 | 51.1 |
K+/(mg·L-1) | 30.9 | 35.6 | 64.4 |
Mg2+/(mg·L-1) | 16.7 | 21.4 | 96.5 |
Compound | Column temperature/℃ | Flow rate/ (mL·min-1) | Wavelength/ nm | Phase mobile phase | Phase elution gradient |
---|---|---|---|---|---|
MB | 40 | 0.2 | 254 | Ammonium acetate (A)+ acetonitrile (B) | 0-1-9-14 min, 10%B-10%B-90%B-90%B |
SMX | 40 | 0.3 | 275 | 0.1% Formic acid solution (A)+ methanol (B) | 0-1-1-3.5-5 min, 20%B-20%B-51.25%B-51.25%B |
GM | 40 | 0.3 | 278 | 0.1% Formic acid solution (A)+ acetonitrile (B) | 0-0.5-1-4-6 min, 5%B-5%B-30%B-30%B |
MDZ | 40 | 0.8 | 318 | Ultrapure water (A)+ acetonitrile (B) | 0-0.5-3-5 min, 6%B-5%B-20%B-90%B |
CIP | 40 | 0.3 | 278 | Ultrapure water (A)+ acetonitrile (B) | 0-0.5-3-5 min, 6%B-5%B-20%B-90%B |
RHB | 40 | 0.2 | 554 | 0.1% Formic acid solution (A)+ acetonitrile (B) | 0-5-8 min, 5%B-95%B-95%B |
TC | 40 | 0.3 | 360 | Ultrapure water (A)+ acetonitrile (B) | 0-0.5-3-5 min, 6%B-5%B-20%B-90%B |
Table S2 HPLC conditions for phase gradient elution measuring concentrations of organic contaminants
Compound | Column temperature/℃ | Flow rate/ (mL·min-1) | Wavelength/ nm | Phase mobile phase | Phase elution gradient |
---|---|---|---|---|---|
MB | 40 | 0.2 | 254 | Ammonium acetate (A)+ acetonitrile (B) | 0-1-9-14 min, 10%B-10%B-90%B-90%B |
SMX | 40 | 0.3 | 275 | 0.1% Formic acid solution (A)+ methanol (B) | 0-1-1-3.5-5 min, 20%B-20%B-51.25%B-51.25%B |
GM | 40 | 0.3 | 278 | 0.1% Formic acid solution (A)+ acetonitrile (B) | 0-0.5-1-4-6 min, 5%B-5%B-30%B-30%B |
MDZ | 40 | 0.8 | 318 | Ultrapure water (A)+ acetonitrile (B) | 0-0.5-3-5 min, 6%B-5%B-20%B-90%B |
CIP | 40 | 0.3 | 278 | Ultrapure water (A)+ acetonitrile (B) | 0-0.5-3-5 min, 6%B-5%B-20%B-90%B |
RHB | 40 | 0.2 | 554 | 0.1% Formic acid solution (A)+ acetonitrile (B) | 0-5-8 min, 5%B-95%B-95%B |
TC | 40 | 0.3 | 360 | Ultrapure water (A)+ acetonitrile (B) | 0-0.5-3-5 min, 6%B-5%B-20%B-90%B |
[1] | XIANG Y, YANG K, ZHAI Z, et al. Molybdenum co-catalytic promotion for Fe3+/peroxydisulfate process: performance, mechanism, and immobilization. Chemical Engineering Journal, 2022, 438: 135656. |
[2] | LI L, YIN Z, CHENG M, et al. Insights into reactive species generation and organics selective degradation in Fe-based heterogeneous Fenton-like systems: a critical review. Chemical Engineering Journal, 2023, 454: 140126. |
[3] | LIU L, YU R H, ZHAO S X, et al. Heterogeneous Fenton system driven by iron-loaded sludge biochar for sulfamethoxazole- containing wastewater treatment. Journal of Environmental Management, 2023, 335: 117576. |
[4] | YANG C Y, WU H, CAI M, et al. Valorization of biomass-derived polymers to functional biochar materials for supercapacitor applications via pyrolysis: advances and perspectives. Polymers, 2023, 15: 2741. |
[5] | WANG J, TANG J. Fe-based Fenton-like catalysts for water treatment: preparation, characterization and modification. Chemosphere, 2021, 276: 130177. |
[6] | AROCKIARAJ M, CLEMENT J, et al. Quantitative structural descriptors of sodalite materials. Journal of Molecular Structure, 2021, 1223: 128766. |
[7] | ZHAO D, ARMUTLULU A, CHEN Y, et al. Highly efficient removal of Cu(II) using mesoporous sodalite zeolite produced from industrial waste lithium-silicon-fume via reactive oxidation species route. Journal of Cleaner Production, 2021, 319: 128682. |
[8] | SCHNELL M, HORST T, QUICKER P. Thermal treatment of sewage sludge in Germany: a review. Journal of Environmental Management. 2020, 263: 110367. |
[9] | ZHAO S, YAN K, WANG Z, et al. Does anaerobic digestion improve environmental and economic benefits of sludge incineration in China? Insight from life-cycle perspective. Resources, Conservation & Recycling, 2023, 188: 106688. |
[10] | 蔡梦宇, 杨彩云, 吴昊, 等. 厌氧消化沼渣的生物电化学深度稳定化及能源回收. 燕山大学学报, 2023, 47(6): 519. |
[11] | GUO X L, YUAN S T, XU Y, et al. Effects of phosphorus and iron on the composition and property of Portland cement clinker utilized incinerated sewage sludge ash. Construction and Building Materials, 2022, 341: 127754. |
[12] | BUTA M, HUBENY J, ZIELINSKI W, et al. Sewage sludge in agriculture-the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops--a review. Ecotoxicology and Environmental Safety, 2021, 214: 112070. |
[13] | LIU Z Z, MAYER B, VENKITRSHWARAN K, et al. The state of technologies and research for energy recovery from municipal wastewater sludge and biosolids. Current Opinion in Environmental Science & Health, 2020, 14: 31. |
[14] | LIU Y, HE X, DUAN X, et al. Photochemical degradation of oxytetracycline: influence of pH and role of carbonate radical. Chemical Engineering Journal, 2015, 276(15): 113. |
[15] | KIM J, ZHANG T Q, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation. Environmental Science and Technology, 2019, 53(22): 13312. |
[16] | WANG L, YAN T, TANG R, et al. Motivation of reactive oxidation species in peracetic acid by adding nanoscale zero-valent iron to synergic removal of spiramycin under ultraviolet irradiation: mechanism and N-nitrosodimethylamine formation potential assessment. Water Research, 2021, 205: 117684. |
[17] | CHEN S, CAI M, LIU Y, et al. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process. Water Research, 2019, 150(1): 153. |
[18] | XIANG Y, YUAN D, ZHU E, et al. Efficacious reduction of ferric ions by molybdenum carbide in the peroxydisulfate Fenton-like reaction for dexamethasone degradation. ACS Applied Materials & Interfaces, 2023, 3(3): 857. |
[19] | AO X, ELORANTA J, HUANG C, et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review. Water Research, 2021, 188: 116479. |
[20] | WOLSKI L, ZIOLEK M. Insight into pathways of methylene blue degradation with H2O2 over mono and bimetallic Nb, Zn oxides. Applied Catalysis B: Environmental, 2018, 224: 634. |
[21] | MONDAL S, REYES M E D A, PAL U. Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Advances, 2017, 7: 8633. |
[22] |
XIA S, ZHANG L, PAN G, et al. Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Physical Chemistry Chemical Physics, 2015, 17: 5345.
DOI PMID |
[23] | LIU Y, JIN W, ZHAO Y, et al. Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Applied Catalysis B: Environmental, 2017, 206: 642. |
[24] | WANG S, WANG H, LIU Y, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid. Separation and Purification Technology, 2020, 233: 115973. |
[25] | WANG J, WANG Z, CHENG Y, et al. Molybdenum disulfide (MoS2): a novel activator of peracetic acid for the degradation of sulfonamide antibiotics. Water Research, 2021, 201: 117291. |
[26] | WANG J, XIONG B, LEI M, et al. Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole. Applied Catalysis B: Environmental, 2021, 280: 119422. |
[1] | WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300. |
[2] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[3] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[4] | ZHANG Xiao-Feng,ZHANG Guan-Hua,MENG Yue,XUE Ji-Long,XIA Sheng-Jie,NI Zhe-Ming. Photocatalytic Degradation of Methylene Blue by Schiff-base Cobalt Modified CoCr Layered Double Hydroxides [J]. Journal of Inorganic Materials, 2019, 34(9): 974-982. |
[5] | SUI Li-Li, WANG Run, ZHAO Dan, SHEN Shu-Chang, SUN Li, XU Ying-Ming, CHENG Xiao-Li, HUO Li-Hua. Construction of Hierarchical α-MoO3 Hollow Microspheres and Its High Adsorption Performance towards Organic Dyes [J]. Journal of Inorganic Materials, 2019, 34(2): 193-200. |
[6] | ZHAO Hai-Bing, XU Hai-Feng, YANG Ke-Wei, LIN Chen-Xue, FENG Miao, YU Yan. Enhanced Photoreversible Color Switching of Methylene Blue Catalyzed by Magnesium-doped TiO2 Nanocrystals [J]. Journal of Inorganic Materials, 2018, 33(10): 1124-1130. |
[7] | YU Yang, TONG Ming-Xing, HE Yu-Lan, CHEN Hui, GAO Jing, LI Guo-Hua. Preparation and Visible-light Photocatalytic Performance of Mesoporous Hollow TiO2/WO3 Spheres [J]. Journal of Inorganic Materials, 2017, 32(4): 365-371. |
[8] | XU Ming-Li, DUAN Ben, ZHANG Ying-Jie, YANG Guo-Tao, DONG Peng, XIA Shu-Biao, YANG Xian-Wan. Effect of Modification Factors of MWCNTs Support on Electrocatalytic Performance of Pt Nanoparticles [J]. Journal of Inorganic Materials, 2015, 30(9): 931-936. |
[9] | PENG Dan, ZHENG Xue-Jun, XIE Shu-Fan, LUO Xiao-Ju, WANG Ding. Fabrication and Photocatalytic Performance of GaN/ZnO Composites [J]. Journal of Inorganic Materials, 2014, 29(9): 956-960. |
[10] | CHEN Yuan, ZHOU Ke-Chao, HUANG Su-Ping, LI Zhi-You, LIU Guo-Cong. Preparation and Photocatalytic Activity of Cu-doped BiVO4 Photocatalysts Fabricated by Hydrothermal Method [J]. Journal of Inorganic Materials, 2012, 27(1): 19-25. |
[11] | LIU Guo-Cong, LI Hai-Bin, DONG Hui. Ultrasonic-hydrothermal Synthesis and Photocatalytic Activities of La-doped Mesoporous TiO2 Microspheres [J]. Journal of Inorganic Materials, 2011, 26(7): 739-746. |
[12] | SHU Huo-Ming, XIE Ji-Min, XU Hui, LI Hua-Ming, XU Yuan-Guo, GU Zheng. Characterization and Photocatalytic Activity of ZnO/AgNbO3 [J]. Journal of Inorganic Materials, 2010, 25(9): 935-941. |
[13] |
CHEN Yi,SHI Li-Yi,YUAN Shuai,WU Jun,ZHANG Mei-Hong,FANG Jian-Hui.
Photoelectrocatalytic Degradation of Methylene Blue by TiO2 Nanotube Array Prepared by Anodic Oxidation [J]. Journal of Inorganic Materials, 2009, 24(4): 680-684. |
[14] | CHUAN Xiu-Yun,LU Xian-Chun,LU Xian-Chu. Photodecomposition of Methylene Blue by TiO2-mounted Diatomite [J]. Journal of Inorganic Materials, 2008, 23(4): 657-661. |
[15] | HOU Ya-Qi,ZHANG Gong,ZHUANG Da-Ming,WU Min-Sheng. Photo catalytic Degradation Properties of Titanium Oxide Film Prepared by Mid-frequency AC Magnetron Sputtering [J]. Journal of Inorganic Materials, 2004, 19(5): 1073-1079. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||