Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 497-503.DOI: 10.15541/jim20240490
• RESEARCH ARTICLE • Previous Articles Next Articles
WAN Junchi(), DU Lulu(
), ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen(
)
Received:
2024-11-20
Revised:
2025-01-13
Published:
2025-05-20
Online:
2025-02-13
Contact:
DU Lulu, lecturer. E-mail: 2024007@zzuli.edu.cn;About author:
WAN Junchi (1995-), male, Master candidate. E-mail: 875801788@qq.com
Supported by:
CLC Number:
WAN Junchi, DU Lulu, ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen. Structural Evolution and Electrochemical Performance of Na4FexP4O12+x/C Cathode Materials for Sodium-ion Batteries[J]. Journal of Inorganic Materials, 2025, 40(5): 497-503.
Fig. 5 Electrochemical performance of SIBs with Na4FexP4O12+x/C as cathodes (a) Initial charge-discharge curves; (b) Initial specific discharge capacities and Coulombic efficiencies; (c) Cycling test at 0.1C. Colorful figures are available on website
Fig. 6 Performance of SIBs with Na4Fe3.1P4O15.1/C as cathodes (a) Rate performance; (b) Charge-discharge curves at different rates; (c) Cycling performance at different rates
Fig. 7 Electrochemical performance of Na4Fe3.1P4O15.1/C as cathodes of SIBs (a) EIS plots; (b) Charge-discharge curves with different cycles at 0.1C; (c) Long-term cycling performance at 0.1C; Colorful figures are available on website
Material | Initial discharge capacity/ (mAh·g-1) | (Reversible capacity/(mAh·g-1))/ cycle number | Capacity retention | Ref. |
---|---|---|---|---|
Na4Fe3.1P4O15.1/C | 102.8 | 101.2/200; 95.0/500 | 98.8%; 92.4% | This work |
Na4Fe2.9Mn0.14(PO4)2(P2O7)@C | 94.5 | 92.1/100 | 97.4% | [S1] |
Na4Fe3(PO4)2(P2O7)/C | 95.3 | 90/100 | 94.7% | [S2] |
NaNi0.4Fe0.2Mn0.4O2 | 100 | 70/100 | 70% | [S3] |
Na4Fe3(PO4)2(P2O7)@C/Ti3C2Tx | 93.4 | 91.1/200 | 97.5% | [S4] |
Na3V2(PO4)3/C | 102 | 94/500 | 92.1% | [S5] |
Na0.44MnO2/C | 114 | 74.1/1000 | 65% | [S6] |
Table S1 Cycle performance comparison of polyanionic cathode materials of sodium-ion batteries in this work and literature[S1-S6]
Material | Initial discharge capacity/ (mAh·g-1) | (Reversible capacity/(mAh·g-1))/ cycle number | Capacity retention | Ref. |
---|---|---|---|---|
Na4Fe3.1P4O15.1/C | 102.8 | 101.2/200; 95.0/500 | 98.8%; 92.4% | This work |
Na4Fe2.9Mn0.14(PO4)2(P2O7)@C | 94.5 | 92.1/100 | 97.4% | [S1] |
Na4Fe3(PO4)2(P2O7)/C | 95.3 | 90/100 | 94.7% | [S2] |
NaNi0.4Fe0.2Mn0.4O2 | 100 | 70/100 | 70% | [S3] |
Na4Fe3(PO4)2(P2O7)@C/Ti3C2Tx | 93.4 | 91.1/200 | 97.5% | [S4] |
Na3V2(PO4)3/C | 102 | 94/500 | 92.1% | [S5] |
Na0.44MnO2/C | 114 | 74.1/1000 | 65% | [S6] |
[1] | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928. |
[2] | ARMAND M, TARASCON J M. Building better batteries. Nature, 2008, 451(7179): 652. |
[3] | YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid. Chemical Reviews, 2011, 111(5): 3577. |
[4] | CRABTREE G. Perspective: the energy-storage revolution. Nature, 2015, 526(7575): S92. |
[5] | ABAS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies. Futures, 2015, 69: 31. |
[6] | ZU C X, LI H. Thermodynamic analysis on energy densities of batteries. Energy & Environmental Science, 2011, 4(8): 2614. |
[7] | DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Applied Materials & Interfaces, 2016, 8(3): 1867. |
[8] | HU M F, HUANG L P, LI H, et al. Research progress on hard carbon anode for Li/Na-ion batteries. Journal of Inorganic Materials, 2024, 39(1): 32. |
[9] | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46(12): 3529. |
[10] | GUO Y J, JIN R X, FAN M, et al. Sodium layered oxide cathodes: properties, practicality and prospects. Chemical Society Reviews, 2024, 53(15): 7828. |
[11] | SU H, JAFFER S, YU H. Transition metal oxides for sodium-ion batteries. Energy Storage Materials, 2016, 5: 116. |
[12] | LAN Y, YAO W, HE X, et al. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angewandte Chemie International Edition, 2020, 59(24): 9255. |
[13] | KOSOVA N V, SHINDROV A A. Mixed polyoxyanion cathode materials. Energy Storage Materials, 2021, 42: 570. |
[14] | BARPANDA P. Pursuit of sustainable iron-based sodium battery cathodes: two case studies. Chemistry of Materials, 2016, 28(4): 1006. |
[15] | NI Q, BAI Y, WU F, et al. Polyanion-type electrode materials for sodium-ion batteries. Advanced Science, 2017, 4(3): 1600275. |
[16] | FERGUS J W. Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010, 195(4): 939. |
[17] | HE L, LI H, GE X, et al. Iron-phosphate-based cathode materials for cost-effective sodium-ion batteries: development, challenges, and prospects. Advanced Materials Interfaces, 2022, 9(20): 2200515. |
[18] | LI H, XU M, LONG H, et al. Stabilization of multicationic redox chemistry in polyanionic cathode by increasing entropy. Advanced Science, 2022, 9(25):2202082. |
[19] | AHSAN Z, CAI Z, WANG S, et al. Recent development of phosphate based polyanion cathode materials for sodium-ion batteries. Advanced Energy Materials, 2024, 14(27): 2400373. |
[20] | SHI Y, JIANG P, WANG S, et al. Slight compositional variation- induced structural disorder-to-order transition enables fast Na+ storage in layered transition metal oxides. Nature Communications, 2022, 13: 7888. |
[21] | WANG J, ZENG W, ZHU J, et al. Fe-rich pyrophosphate with prolonged high-voltage-plateaus and suppressed voltage decay as sodium-ion battery cathode. Nano Energy, 2023, 116: 108822. |
[22] | ZHAO A, LIU C, JI F, et al. Revealing the phase evolution in Na4FexP4O12+x (2≤x≤4) cathode materials. ACS Energy Letters, 2023, 8(1): 753. |
[23] | REN W, QIN M, ZHOU Y, et al. Electrospun Na4Fe3(PO4)2(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries. Energy Storage Materials, 2023, 54: 776. |
[24] | SONG H J, KIM K H, KIM J C, et al. Superior sodium storage performance of reduced graphene oxide-supported Na3.12Fe2.44(P2O7)2/C nanocomposites. Chemical Communications, 2017, 53(67): 9316. |
[25] | WANG J, XU S D, LU Z H, et al. Hollow-structured CoSe2/C anode materials: preparation and sodium storage properties for sodium-ion batteries. Journal of Inorganic Materials, 2022, 37(12): 1344. |
[26] | YOU S, ZHANG Q, LIU J, et al. Hard carbon with an opened pore structure for enhanced sodium storage performance. Energy & Environmental Science, 2024, 17(21): 8189. |
[27] | LIU Y, ZHANG N, WANG F, et al. Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries. Advanced Functional Materials, 2018, 28(30): 1801917. |
[28] | ZHANG L M, HE X D, WANG S, et al. Hollow-sphere-structured Na4Fe3(PO4)2(P2O7)/C as a cathode material for sodium-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(22): 25972. |
[29] | WU X, ZHONG G, YANG Y. Sol-Gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. Journal of Power Sources, 2016, 327: 666. |
[30] | KONG G Q, LENG M Z, ZHOU Z R, et al. Sb doped O3 type Na0.9Ni0.5Mn0.3Ti0.2O2 cathode material for Na-ion battery. Journal of Inorganic Materials, 2023, 38(6): 656. |
[31] | YUAN T, WANG Y, ZHANG J, et al. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy, 2019, 56: 160. |
[32] | PENG B, WAN G, AHMAD N, et al. Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Advanced Energy Materials, 2023, 13(27): 2300334. |
[33] | WANG C, LIU L, ZHAO S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium- ion battery. Nature Communications, 2021, 12: 2256. |
[34] | LI M, QIU X, YIN Y, et al. O3-type Ni-Rich NaNi2/3Mn1/6Fe1/6O2: a high-performance cathode material for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 969: 172406. |
[1] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[2] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[3] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. |
[4] | ZHU Zhijie, SHEN Mingyuan, WU Tao, LI Wencui. Inhibition of P2-O2 Phase Transition for P2-Na2/3Ni1/3Mn2/3O2 as Cathode of Sodium-ion Battery via Synergetic Substitution of Cu and Mg [J]. Journal of Inorganic Materials, 2025, 40(2): 184-195. |
[5] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[6] | ZHOU Jingyu, LI Xingyu, ZHAO Xiaolin, WANG Youwei, SONG Erhong, LIU Jianjun. Rate and Cycling Performance of Ti and Cu Doped β-NaMnO2 as Cathode of Sodium-ion Battery [J]. Journal of Inorganic Materials, 2024, 39(12): 1404-1412. |
[7] | CHEN Mingyue, YAN Zhichao, CHEN Jing, LI Minjuan, LIU Zhiyong, CAI Chuanbing. YBa2Cu3O7-δ Thin Film: Preparation by BaCl2/BaF2-MOD Method and Superconducting Property [J]. Journal of Inorganic Materials, 2023, 38(2): 199-204. |
[8] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[9] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[10] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[11] | FAN Wenqi, SONG Xuemei, HUANG Yiling, CHANG Chengkang. Structure Change and Phase Transition Distribution of YSZ Coating Caused by CMAS Corrosion [J]. Journal of Inorganic Materials, 2021, 36(10): 1059-1066. |
[12] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[13] | YU Ying, DU Hongliang, YANG Zetian, JIN Li, QU Shaobo. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges [J]. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[14] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[15] | XU Dong, ZHU Yufang, ZHENG Yuanyi, LUO Yu, CHEN Hangrong. Injectable Magnetic Liquid-solid Phase Transition Material for MR Imaging and Low-temperature Magnetocaloric Therapy of Osteosarcoma [J]. Journal of Inorganic Materials, 2020, 35(11): 1277-1282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||