Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (8): 903-910.DOI: 10.15541/jim20240057
Special Issue: 【能源环境】热电材料(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
MIAO Xin1(), YAN Shiqiang1, WEI Jindou1, WU Chao1, FAN Wenhao2, CHEN Shaoping1(
)
Received:
2024-01-30
Revised:
2024-02-20
Published:
2024-08-20
Online:
2024-04-19
Contact:
CHEN Shaoping, professor. E-mail: chenshaoping@tyut.edu.cnAbout author:
MIAO Xin (1999-), male, Master candidate. E-mail: miaoxin0242@link.tyut.edu.cn
Supported by:
CLC Number:
MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability[J]. Journal of Inorganic Materials, 2024, 39(8): 903-910.
Fig. 1 Microstructure and composition of Te0.985Sb0.015 precursor powder (a) Backscattered SEM image; (b) XRD patterns and quasi-1D chain crystal structure of Te and Te0.985Sb0.015 powders; Colorful figures are available on website
Fig. 3 (a) Thicknesses of the interface reaction layers (IRLs) at the Te0.985Sb0.015/NixTe interfaces, and (b) formation Gibbs free energies in molar (ΔrGT) of the interface products at the Te0.985Sb0.015/NixTe interfaces
Total migration of atoms | x=0.500 | x=0.563 | x=0.667 | x=0.833 | x=0.908 | Te0.985Sb0.015/Ni |
---|---|---|---|---|---|---|
CN·l/(mol·cm-2) | 0 | 0.1297 | 0.2134 | 0.2810 | 0.3154 | 0.5653 |
Table 1 Total migration of atoms (CN·l) at Te0.985Sb0.015/NixTe interface
Total migration of atoms | x=0.500 | x=0.563 | x=0.667 | x=0.833 | x=0.908 | Te0.985Sb0.015/Ni |
---|---|---|---|---|---|---|
CN·l/(mol·cm-2) | 0 | 0.1297 | 0.2134 | 0.2810 | 0.3154 | 0.5653 |
Fig. 5 Microstructures of Te0.985Sb0.015/NixTe interfaces after aging at 473 K for 6 and 12 d Backscattering SEM images for (a) x=0.500, (b) x=0.563, and (c) x=0.667
Fig. 6 Performance of NixTe/Te0.985Sb0.015/NixTe (x=0.500, 0.563, 0.667) single-leg devices (a, b) Room temperature V-I curves and contact resistivity, ρc, before aging; (c) Time-dependent room temperature ρc; (d) Time-dependent efficiency, η, under a temperature difference of 180 K (hot end: 473 K, cold end: 293 K)
Fig. S2 Thermoelectric performance of Te0.985Sb0.015 in the direction parallel to the sintering pressure (a) Total thermal conductivity, κ; (b) Carrier concentration, n; (c) Resistivity; (d) Seebeck coefficient; (e) Power factor, PF; (f) Dimensionless ZT of Te0.985Sb0.015; The test results of Pei et al.[15] are also drawn in the figures for comparison
Fig. S4 Microstructures and element distributions of sintered Te0.985Sb0.015/NixTe interfaces Backscatter SEM images and EDS spectra for (a) x=0.500, (b) x=0.563, (c) x=0.667, (d) x=0.833, and (e) x=0.908
Phase lable | Formula in reference | Formula used here | Temperature/K | ST/(J·mol-1·K-1) | HT/(kJ·mol-1) | GT/(kJ·mol-1) | Ref. |
---|---|---|---|---|---|---|---|
δ(-NiTe2-x, 52.2%-66.7% (in atom) Te) | Ni0.476Te0.524 | Ni0.908Te | 298.15 | 76.393 | -51.908 | -74.685 | [ |
600.00 | 112.729 | -36.120 | -103.758 | ||||
700.00 | 121.397 | -30.494 | -115.472 | ||||
Ni0.4Te0.6 | Ni0.667Te | 298.15 | 66.917 | -47.833 | -67.785 | [ | |
600.00 | 98.732 | -33.987 | -93.226 | ||||
700.00 | 106.415 | -29.000 | -103.491 | ||||
Ni0.333Te0.667 | Ni0.5Te | 298.15 | 60.135 | -43.778 | -61.707 | [ | |
600.00 | 88.253 | -31.552 | -84.504 | ||||
700.00 | 95.001 | -27.172 | -93.673 | ||||
Te | Te | Te | 298.15 | 49.497 | 0.000 | -14.757 | [ |
600.00 | 69.537 | 8.766 | -32.956 | ||||
700.00 | 74.694 | 12.114 | -40.171 | ||||
Ni | Ni | Ni | 298.15 | 29.874 | 0.000 | -8.907 | [ |
600.00 | 50.419 | 9.008 | -21.243 | ||||
700.00 | 55.546 | 12.326 | -26.557 |
Table S1 Thermodynamic data. Values of entropy (ST), enthalpy (HT), and Gibbs free energy (GT) at 298.15, 600.00 and 700.00 K, respectively
Phase lable | Formula in reference | Formula used here | Temperature/K | ST/(J·mol-1·K-1) | HT/(kJ·mol-1) | GT/(kJ·mol-1) | Ref. |
---|---|---|---|---|---|---|---|
δ(-NiTe2-x, 52.2%-66.7% (in atom) Te) | Ni0.476Te0.524 | Ni0.908Te | 298.15 | 76.393 | -51.908 | -74.685 | [ |
600.00 | 112.729 | -36.120 | -103.758 | ||||
700.00 | 121.397 | -30.494 | -115.472 | ||||
Ni0.4Te0.6 | Ni0.667Te | 298.15 | 66.917 | -47.833 | -67.785 | [ | |
600.00 | 98.732 | -33.987 | -93.226 | ||||
700.00 | 106.415 | -29.000 | -103.491 | ||||
Ni0.333Te0.667 | Ni0.5Te | 298.15 | 60.135 | -43.778 | -61.707 | [ | |
600.00 | 88.253 | -31.552 | -84.504 | ||||
700.00 | 95.001 | -27.172 | -93.673 | ||||
Te | Te | Te | 298.15 | 49.497 | 0.000 | -14.757 | [ |
600.00 | 69.537 | 8.766 | -32.956 | ||||
700.00 | 74.694 | 12.114 | -40.171 | ||||
Ni | Ni | Ni | 298.15 | 29.874 | 0.000 | -8.907 | [ |
600.00 | 50.419 | 9.008 | -21.243 | ||||
700.00 | 55.546 | 12.326 | -26.557 |
Chemical reaction equation | Temperature/K | ΔrST/(J·mol-1·K-1) | ΔrHT/(kJ·mol-1) | ΔrGT/(kJ·mol-1) |
---|---|---|---|---|
0.25Te+0.75Ni0.667Te→Ni0.5Te | 298.15 | -2.427 | -7.903 | -7.180 |
600.00 | -3.180 | -8.253 | -6.345 | |
700.00 | -3.484 | -8.451 | -6.012 | |
0.449Te+0.551Ni0.908Te→Ni0.5Te | 298.15 | -4.182 | -15.177 | -13.930 |
600.00 | -5.083 | -15.586 | -12.536 | |
700.00 | -5.426 | -15.809 | -12.010 | |
1.5Ni+Te→Ni1.5Te | 298.15 | 5.692 | -57.500 | -59.197 |
600.00 | 5.969 | -57.318 | -60.899 | |
700.00 | 8.110 | -56.023 | -61.700 |
Table S2 Molar formation Gibbs free energies (ΔrGT) of interface products at 298.15, 600.00 and 700.00 K, respectively
Chemical reaction equation | Temperature/K | ΔrST/(J·mol-1·K-1) | ΔrHT/(kJ·mol-1) | ΔrGT/(kJ·mol-1) |
---|---|---|---|---|
0.25Te+0.75Ni0.667Te→Ni0.5Te | 298.15 | -2.427 | -7.903 | -7.180 |
600.00 | -3.180 | -8.253 | -6.345 | |
700.00 | -3.484 | -8.451 | -6.012 | |
0.449Te+0.551Ni0.908Te→Ni0.5Te | 298.15 | -4.182 | -15.177 | -13.930 |
600.00 | -5.083 | -15.586 | -12.536 | |
700.00 | -5.426 | -15.809 | -12.010 | |
1.5Ni+Te→Ni1.5Te | 298.15 | 5.692 | -57.500 | -59.197 |
600.00 | 5.969 | -57.318 | -60.899 | |
700.00 | 8.110 | -56.023 | -61.700 |
Item | NiTe2 (Ni0.5Te) | NiTe1.776 (Ni0.563Te) | NiTe1.5 (Ni0.667Te) | NiTe1.2 (Ni0.833Te) | NiTe1.1 (Ni0.908Te) | Ni | Te | NiTe0.667 (Ni1.5Te) |
---|---|---|---|---|---|---|---|---|
M/(g·mol-1) | 313.893 | 285.311 | 250.093 | 211.813 | 199.053 | 58.693 | 127.600 | 143.802 |
n | 2.000 | 1.776 | 1.500 | 1.200 | 1.100 | 0.000 | - | 0.667 |
ρ/(g·cm-3) | 7.701 | 7.565 | 7.363 | 7.086 | 6.976 | 8.910 | - | 8.126 |
Table S3 Density (ρ), molar mass (M) and moles of the bound Te per mole substance
Item | NiTe2 (Ni0.5Te) | NiTe1.776 (Ni0.563Te) | NiTe1.5 (Ni0.667Te) | NiTe1.2 (Ni0.833Te) | NiTe1.1 (Ni0.908Te) | Ni | Te | NiTe0.667 (Ni1.5Te) |
---|---|---|---|---|---|---|---|---|
M/(g·mol-1) | 313.893 | 285.311 | 250.093 | 211.813 | 199.053 | 58.693 | 127.600 | 143.802 |
n | 2.000 | 1.776 | 1.500 | 1.200 | 1.100 | 0.000 | - | 0.667 |
ρ/(g·cm-3) | 7.701 | 7.565 | 7.363 | 7.086 | 6.976 | 8.910 | - | 8.126 |
Fig. S6 Performance of Ni0.5Te/Te0.985Sb0.015/Ni0.5Te single-leg devices under a temperature difference of 180 K (Hot end: 473 K, Cold end: 293 K) (a) Current-dependent output voltage, Uout; (b) Current-dependent heat flux, Q
Fig. S7 Aging-time dependent performance of Ni0.5Te/Te0.985Sb0.015/Ni0.5Te single-leg devices under a temperature difference of 180 K (Hot end: 473 K, Cold end: 293 K) (a, c) Current-dependent output voltages, Uout and (b, d) current-dependent heat flux, Q, after aging for (a, b) 3 and (c, d) 6-15 d; Aging-time dependent (e) open-circuit voltage, Uo and (f) internal resistance, Rin with inset in (f) showing internal resistivity, R, of the devices
[1] | WEI J, YANG L, MA Z, et al. Review of current high-ZT thermoelectric materials. Journal of Materials Science, 2020, 55(27): 12642. |
[2] | LIU H T, SUN Q, ZHONG Y, et al. Enhanced thermoelectric performance of n-type Nb-doped PbTe by compensating resonant level and inducing atomic disorder. Materials Today Physics, 2022, 24: 100677. |
[3] | SU L, WANG D, WANG S, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science, 2022, 375(6587): 1385. |
[4] | SUN J, WANG R, CUI W, et al. Percolation process-mediated rich defects in hole-doped PbSe with enhanced thermoelectric performance. Chemistry of Materials, 2022, 34(14): 6450. |
[5] | AN D, WANG J, ZHANG J, et al. Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics. Energy & Environmental Science, 2021, 14(10): 5469. |
[6] | YANG J, LI G, ZHU H, et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material. Joule, 2022, 6(1): 193. |
[7] | CHU J, HUANG J, LIU R, et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nature Communications, 2020, 11(1): 2723. |
[8] | BJØRK R. The universal influence of contact resistance on the efficiency of a thermoelectric generator. Journal of Electronic Materials, 2015, 44(8): 2869. |
[9] | ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019, 34(3): 279. |
[10] | WU X, HAN Z, ZHU Y, et al. A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs. Acta Materialia, 2022, 226: 117616. |
[11] | HU X K, ZHANG S M, ZHAO F, et al. Thermoelectric device: contact interface and interface materials. Journal of Inorganic Materials, 2019, 34(3): 269. |
[12] | SAKANO M, HIRAYAMA M, TAKAHASHI T, et al. Radial spin texture in elemental tellurium with chiral crystal structure. Physical Review Letters, 2020, 124(13): 136404. |
[13] | REITZ J R. Electronic band structure of selenium and tellurium. Physical Review, 1957, 105(4): 1233. |
[14] | 李蓉, 陈少平, 樊文浩, 等. 孤对电子对碲热电传输性能的影响. 材料导报, 2018, 32(21): 3726. |
[15] | LIN S Q, LI W, ZHANG X Y, et al. Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorganic Chemistry Frontiers, 2017, 4(6): 1066. |
[16] | RAO F, DING K, ZHOU Y, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science, 2017, 358(6369): 1423. |
[17] | GUO J, FAN W, WANG Y, et al. Study on improving comprehensive property of Te-based thermoelectric joint. Journal of Alloys and Compounds, 2021, 886: 161242. |
[18] | 郭敬云, 陈少平, 樊文浩, 等. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 179. |
[19] | HE Z, CHANG L G, LIN Y, et al. Real-time visualization of solid-phase ion migration kinetics on nanowire monolayer. Journal of the American Chemical Society, 2020, 142(17): 7968. |
[20] | TASHIRO M, SUKENAGA S, IKEMOTO K, et al. Interfacial reactions between pure Cu, Ni, and Ni-Cu alloys and p-type Bi2Te3 bulk thermoelectric material. Journal of Materials Science, 2021, 56(29): 16545. |
[21] | FERRERES X R, AMINORROAYA YAMINI S, NANCARROW M, et al. One-step bonding of Ni electrode to n-type PbTe—a step towards fabrication of thermoelectric generators. Materials & Design, 2016, 107: 90. |
[22] | ZHANG J, WEI P, ZHANG H, et al. Enhanced contact performance and thermal tolerance of Ni/Bi2Te3 joints for Bi2Te3-based thermoelectric devices. ACS Applied Materials & Interfaces, 2023, 15(18): 22705. |
[23] | CHEN J, FAN W, WANG Y, et al. Improvement of stability in a Mg2Si-based thermoelectric single-leg device via Mg50Si15Ni50 barrier. Journal of Alloys and Compounds, 2022, 926: 166888. |
[24] | WANG Y, CHEN J, JIANG Y, et al. Suppression of interfacial diffusion in Mg3Sb2 thermoelectric materials through an Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni-graded structure. ACS Applied Materials & Interfaces, 2022, 14(29): 33419. |
[25] | CHEN S, CHEN J, FAN W, et al. Improvement of contact and bonding performance of Mg2Si/Mg2SiNi3 thermoelectric joints by optimizing the concentration gradient of Mg. Journal of Electronic Materials, 2022, 51(5): 2256. |
[26] | SUN Y, YIN L, ZHANG Z, et al. Low contact resistivity and excellent thermal stability of p-type YbMg0.8Zn1.2Sb2/Fe-Sb junction for thermoelectric applications. Acta Materialia, 2022, 235: 118066. |
[27] | SUN Z, CHEN X, ZHANG J, et al. Achieving reliable CoSb3 based thermoelectric joints with low contact resistivity using a high-entropy alloy diffusion barrier layer. Journal of Materiomics, 2022, 8(4): 882. |
[28] | ARVHULT C M, GUÉNEAU C, GOSSÉ S, et al. Thermodynamic assessment of the Ni-Te system. Journal of Materials Science, 2019, 54(16): 11304. |
[29] | LIAO C N, LEE C H, CHEN W J. Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper. Electrochemical and Solid-State Letters, 2007, 10(9): 23. |
[30] | XIA H, CHEN C L, DRYMIOTIS F, et al. Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication. Journal of Electronic Materials, 2014, 43(11): 4064. |
[31] | LI C C, DRYMIOTIS F, LIAO L L, et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. Journal of Materials Chemistry C, 2015, 3(40): 10590. |
[32] | WANG X, GU M, LIAO J C, et al. High temperature interfacial stability of Fe/Bi0.5Sb1.5Te3 thermoelectric elements. Journal of Inorganic Materials, 2021, 36(2): 197. |
[33] | TSUTOMU K, HIROMASA T, SATO H K, et al. Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01. Applied Physics Letters, 2018, 112(3): 33903. |
[34] | AN D, CHEN S, LU Z, et al. Low thermal conductivity and optimized thermoelectric properties of p-type Te-Sb2Se3: synergistic effect of doping and defect engineering. ACS Applied Materials & Interfaces, 2019, 11(31): 27788. |
[35] | NORÉN L, TING V, WITHERS R L, et al. An electron and X-ray diffraction investigation of Ni1+xTe2 and Ni1+xSe2CdI2/NiAs type solid solution phases. Journal of Solid State Chemistry, 2001, 161(2): 266. |
[36] | ANDERSON J S. Nonstoichiometric compounds: a critique of current structural views. Proceedings of the Indian Academy of Sciences - Chemical Sciences, 1984, 93(6): 861. |
[37] | CHEN J, ZHANG Y, YU Z, et al. Interface growth and void formation in Sn/Cu and Sn0.7Cu/Cu systems. Applied Sciences, 2018, 8(12): 2703. |
[38] | LIN Y, WU X, LI Y, et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique. Nano Energy, 2022, 102: 107736. |
[39] | LIU R, XING Y, LIAO J, et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator. Nature Communications, 2022, 13(1): 7738. |
[40] | BALL R G J, DICKINSON S, CORDFUNKE E H P, et al. Thermochemical data acquisition. Part II. Luxembourg: Commission of the European Communities, 1992: 106. |
[41] | BARIN I. Thermochemical data of pure substances. 3rd ed. Weinheim: VCH Verlagsgesellschaft mbH, 1995: 1198. |
[42] | 叶贡欣. 扩散控制固相反应动力学关系的研究. 合肥水泥研究设计院院刊, 1992(1): 10. |
[43] | 陈立东, 刘睿恒, 史迅. 热电材料与器件. 北京: 科学出版社, 2018: 1. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[3] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[4] | TAN Bowen, GENG Shuanglong, ZHANG Kai, ZHENG Bailin. Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupling Degradation [J]. Journal of Inorganic Materials, 2025, 40(7): 772-780. |
[5] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[6] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[7] | WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong. ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure [J]. Journal of Inorganic Materials, 2025, 40(7): 817-825. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[10] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[11] | TANG Ying, LI Jie, XIANG Huaicheng, FANG Weishuang, LIN Huixing, YANG Junfeng, FANG Liang. Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 656-666. |
[12] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[13] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[14] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[15] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||