Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (11): 1331-1337.DOI: 10.15541/jim20230121
Special Issue: 【能源环境】热电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LU Zhiqiang1,2(), LIU Keke1,2, LI Qiang1,2, HU Qin1,2, FENG Liping1,2, ZHANG Qingjie2, WU Jinsong2,3, SU Xianli1,2(
), TANG Xinfeng1,2(
)
Received:
2023-03-09
Revised:
2023-05-09
Published:
2023-06-02
Online:
2023-06-02
Contact:
TANG Xinfeng, professor. E-mail: tangxf@whut.edu.cn;About author:
About author: LU Zhiqiang (1996-), male, Master candidate. E-mail: luzhiqiangmail@whut.edu.cn
Supported by:
CLC Number:
LU Zhiqiang, LIU Keke, LI Qiang, HU Qin, FENG Liping, ZHANG Qingjie, WU Jinsong, SU Xianli, TANG Xinfeng. Donor-like Effect and Thermoelectric Performance in p-Type Bi0.5Sb1.5Te3 Alloy[J]. Journal of Inorganic Materials, 2023, 38(11): 1331-1337.
Fig. 1 (a) Powder XRD patterns of sintered samples with powders treated in different atmospheres, and (b) XRD patterns of bulk samples measured perpendicular to the sintered pressing direction
Sample | F | σ/(×104, S•m−1) | S/(μV•K−1) | n/(×1019, cm−3) | μ/(cm2•V−1•s−1) | κ/(W•m−1•K−1) | m*/m0 | ZT | ZTave |
---|---|---|---|---|---|---|---|---|---|
In-Ar | 0.076 | 17.50 | 150 | 4.49 | 243 | 1.49 | 0.93 | 0.78 | 0.92 |
Out-Ar | 0.074 | 15.55 | 160 | 3.88 | 249 | 1.45 | 0.91 | 0.82 | 0.86 |
In-Air | 0.078 | 12.92 | 172 | 3.31 | 243 | 1.28 | 0.89 | 0.90 | 0.81 |
Out-Air | 0.072 | 12.36 | 177 | 3.21 | 240 | 1.23 | 0.89 | 0.94 | 0.87 |
Table 1 Orientation factor (F), conductivity (σ), Seebeck coefficient (S), carrier concentration (n), mobility (μ), total thermal conductivity(κ), effective mass (m*/m0), and thermoelectric value ZT of the samples treated with different atmospheres at room temperature and average thermoelectric value ZTave
Sample | F | σ/(×104, S•m−1) | S/(μV•K−1) | n/(×1019, cm−3) | μ/(cm2•V−1•s−1) | κ/(W•m−1•K−1) | m*/m0 | ZT | ZTave |
---|---|---|---|---|---|---|---|---|---|
In-Ar | 0.076 | 17.50 | 150 | 4.49 | 243 | 1.49 | 0.93 | 0.78 | 0.92 |
Out-Ar | 0.074 | 15.55 | 160 | 3.88 | 249 | 1.45 | 0.91 | 0.82 | 0.86 |
In-Air | 0.078 | 12.92 | 172 | 3.31 | 243 | 1.28 | 0.89 | 0.90 | 0.81 |
Out-Air | 0.072 | 12.36 | 177 | 3.21 | 240 | 1.23 | 0.89 | 0.94 | 0.87 |
Fig. 3 (a) Backscattered electron images, (b) Bi, (c) Sb, and (d) Te elemental distribution mappings on the polished surface of In-Ar sample via EDS along the direction perpendicular to the sintering pressure
Fig. 5 Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor for samples treated with different atmospheres along the direction perpendicular to the sintering pressure, (d) relationship between Seebeck coefficient and carrier concentration (Pisarenko curve) at room temperature for Bi-Sb-Te alloy
Fig. 6 Temperature dependence of (a) total thermal conductivity, (b) sum of lattice thermal conductivity and bipolar thermal conductivity, (c) thermoelectric merit ZT for samples treated with different atmospheres along the direction perpendicular to the sintering pressure
[1] | IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery. Energy & Environmental Science, 2019, 12(3): 965. |
[2] |
YANG X, SU X, YAN Y, et al. Structures and thermoelectric properties of (GeTe)nBi2Te3. Journal of Inorganic Materials, 2021, 36(1): 75.
DOI URL |
[3] |
GONG H, SU X, YAN Y, et al. Ultra-fast synthesis of Cu2S thermoelectric materials under pulsed electric field. Journal of Inorganic Materials, 2019, 34(12): 1295.
DOI |
[4] |
REN P, WANG C, ZI P, et al. Effect of Te and In co-doping on thermoelectric properties of Cu2SnSe3compounds. Journal of Inorganic Materials, 2022, 37(10): 1079.
DOI URL |
[5] | SHI W, WANG D, SHUAI Z. High-performance organic thermoelectric materials: theoretical insights and computational design. Advanced Electronic Materials, 2019, 5(11): 1079. |
[6] |
CHEN L D, XIONG Z, BAI S Q. Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials, 2010, 25(6): 561.
DOI URL |
[7] | CHEN Y, HOU X, MA C, et al. Review of development status of Bi2Te3-based semiconductor thermoelectric power generation. Advances in Materials Science and Engineering, 2018, 2018: 1210562. |
[8] |
KAJIHARA T, MAKINO K, LEE Y H, et al. Study of thermoelectric generation unit for radiant waste heat. Materials Today: Proceedings, 2015, 2(2): 804.
DOI URL |
[9] |
TANG X, LI Z, LIU W, et al. A comprehensive review on Bi2Te3- based thin films: thermoelectrics and beyond. Interdisciplinary Materials, 2022, 1(1): 88.
DOI URL |
[10] |
KIM F, KWON B, EOM Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nature Energy, 2018, 3(4): 301.
DOI |
[11] |
ZHU Y K, WU P, GUO J, et al. Achieving a fine balance in mechanical properties and thermoelectric performance in commercial Bi2Te3 materials. Ceramics International, 2020, 46(10): 14994.
DOI URL |
[12] |
DAI Y J, HU H M, GE T S, et al. Investigation on a mini-CPC hybrid solar thermoelectric generator unit. Renewable Energy, 2016, 92: 83.
DOI URL |
[13] |
CHAO W H, TSENG S C, YANG P H, et al. Enhanced thermoelectric properties of Bi2Te3 doping Zn4Sb3 by combinatorial approach. Surface and Coatings Technology, 2013, 231: 34.
DOI URL |
[14] |
FANG T, LI X, HU C, et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions. Advanced Functional Materials, 2019, 29(28): 1900677.
DOI URL |
[15] | SHI Q, LI J, ZHAO X, et al. Comprehensive insight into p-type Bi2Te3-based thermoelectrics near room temperature. ACS Applied Materials & Interfaces, 2022, 14(44): 49425. |
[16] |
LI Y, CAI K, HUANG B, et al. Use of molecular dynamics simulations to study the effects of nanopores and vacancies on the mechanical properties of Bi2Te3. Journal of Electronic Materials, 2013, 43(6): 1824.
DOI URL |
[17] |
REN F, MENCHHOFER P, KIGGANS J, et al. Development of thermoelectric fibers for miniature thermoelectric devices. Journal of Electronic Materials, 2015, 45(3): 1412.
DOI URL |
[18] |
TANG X, YAN Y, XIAO Y, et al. Effect of surface treatment of n-type Bi2Te3-based materials on the properties of thermoelectric units. Journal of Inorganic Materials, 2023, 38(2): 163.
DOI URL |
[19] | ZHENG Y, TAN X Y, WAN X, et al. Thermal stability and mechanical response of Bi2Te3-based materials for thermoelectric applications. ACS Applied Materials & Interfaces, 2019, 3(3): 2078. |
[20] |
FAN X A, YANG J Y, ZHU W, et al. Effect of nominal Sb2Te3 content on thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x alloys by MA-HP. Journal of Physics D: Applied Physics, 2006, 39(23): 5069.
DOI URL |
[21] |
GÜLER E, GÜLER M. Theoretical prediction of the structural, elastic, mechanical and phonon properties of bismuth telluride under pressure. International Journal of Modern Physics B, 2015, 29(31): 1550222.
DOI URL |
[22] |
IVANOVA L D, PETROVA L I, GRANATKINA Y V, et al. Thermoelectric materials based on Sb2Te3-Bi2Te3 solid solutions with optimal performance in the range 100-400 K. Inorganic Materials, 2007, 43(9): 933.
DOI URL |
[23] |
KIM H S, HEINZ N A, GIBBS Z M, et al. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 2017, 20(8): 452.
DOI URL |
[24] |
STEPANOV N P, KALASHNIKOV A A, ULASHKEVICH Y V. Plasma screening of the fundamental absorption edge in crystals of Bi2Te3-Sb2Te3 solid solutions with more than 80mol% Sb2Te3. Optics and Spectroscopy, 2014, 117(3): 401.
DOI URL |
[25] | FAN X A, YANG J Y, CHEN R G, et al. Phase transformation and thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75prepared by mechanical alloying and hot pressing. Materials Science and Engineering: A, 2006, 438: 190. |
[26] |
ALIEV I I, MAMEDOVA N A, SADYGOV F M, et al. Investigation of the chemical interaction in the Sb2Te3-InSe system and the properties of the obtained phases. Russian Journal of Inorganic Chemistry, 2020, 65(10): 1585.
DOI |
[27] |
FENG S K, LI S M, FU H Z. Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling. Chinese Physics B, 2014, 23(11): 117202.
DOI URL |
[28] |
WANG S Y, XIE W J, TANG X F. Effects of preparation techniques on the thermoelectric properties and pressive strengths of n-type B2Te3 based materials. Journal of Inorganic Materials, 2010, 25(6): 609.
DOI URL |
[29] |
YE S, HWANG J D, CHEN C M. Strong anisotropic effects of p-type Bi2Te3 element on the Bi2Te3/Sn interfacial reactions. Metallurgical and Materials Transactions A, 2015, 46(6): 2372.
DOI URL |
[30] |
ZHAO L D, ZHANG B P, LI J F, et al. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2008, 455(1/2): 259.
DOI URL |
[31] |
KIM H C, OH T S, HYUN D B. Thermoelectric properties of the p-type Bi2Te3-Sb2Te3-Sb2Se3alloys fabricated by mechanical alloying and hot pressing. Journal of Physics and Chemistry of Solids, 2000, 61(5): 743.
DOI URL |
[32] |
NAVRÁTIL J, STARÝ Z, PLECHÁČEK T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Materials Research Bulletin, 1996, 31(12): 1559.
DOI URL |
[33] |
SHIN H S, HA H P, HYUN D B, et al. Thermoelectric properties of 25%Bi2Te3-75%Sb2Te3 solid solution prepared by hot-pressing method. Journal of Physics and Chemistry of Solids, 1997, 58(4): 671.
DOI URL |
[34] |
SCHULTZ J M, MCHUGH J P, TILLER W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. Journal of Applied Physics, 1962, 33(8): 2443.
DOI URL |
[35] | ZHANG Q, GU B, WU Y, et al. Evolution of the intrinsic point defects in bismuth telluride-based thermoelectric materials. ACS Applied Materials & Interfaces, 2019, 11(44): 41424. |
[36] | TAO Q, WU H, PAN W, et al. Removing the oxygen-induced donor-like effect for high thermoelectric performance in n-type Bi2Te3-based compounds. ACS Applied Materials & Interfaces, 2021, 13(50): 60216. |
[37] |
LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. Journal of Inorganic and Nuclear Chemistry, 1959, 9(2): 113.
DOI URL |
[38] |
STORDEUR M, STÖLZER M, SOBOTTA H, et al. Investigation of the valence band structure of thermoelectric (Bi1-xSbx)2Te3 single crystals. Physica Status Solidi B, 1988, 150(1): 165.
DOI URL |
[39] | EROFEEV R S, OVECHKINA V N. Energy spectrum of solid solutions of Bi2Te3-Sb2Te3system. Inorganic Materials, 1981, 17(10): 1316. |
[40] | GAIDUKOVA V S, EROFEEV R S, OVECHKINA V N. Characteristics of the energy spectrum of solid solutions in the SbTe-BiTe system. Inorganic Materials, 1981, 17(2): 169. |
[41] |
HAO F, QIU P, SONG Q, et al. Roles of Cu in the enhanced thermoelectric properties in Bi0.5Sb1.5Te3. Materials (Basel), 2017, 10(3): 251.
DOI URL |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[3] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344. |
[4] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[5] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[6] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[7] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[8] | LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2021, 36(8): 835-840. |
[9] | YANG Xiao, SU Xianli, YAN Yonggao, TANG Xinfeng. Structures and Thermoelectric Properties of (GeTe)nBi2Te3 [J]. Journal of Inorganic Materials, 2021, 36(1): 75-80. |
[10] | LIU Hong-Xia, LI Wen, ZHANG Xin-Yue, LI Juan, PEI Yan-Zhong. Thermoelectric Properties of (Ag2Se)1-x(Bi2Se3)x [J]. Journal of Inorganic Materials, 2019, 34(3): 341-348. |
[11] | LI Zhou, XIAO Chong. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach [J]. Journal of Inorganic Materials, 2019, 34(3): 294-300. |
[12] | LIU Ying, DAI Dan, JIANG Nan. Synthesis of the Nitrogen-doped CVD Graphene through Triazine [J]. Journal of Inorganic Materials, 2017, 32(5): 517-522. |
[13] | LI Song-Hao, ZHANG Xin, LIU Hong-Liang, ZHENG Liang, ZHANG Jiu-Xing. Synthesis and Thermoelectric Properties of Ag-doped SnSe [J]. Journal of Inorganic Materials, 2016, 31(7): 751-755. |
[14] | WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, MAO Jian-Hui, XING Jiao-Jiao, LI Yi-Huai. PPP Addition to Improve Thermoelectric Properties of ZnO-based Thermoelectric Composites [J]. Journal of Inorganic Materials, 2016, 31(11): 1249-1254. |
[15] | ZHAN Bin, LAN Jin-Le, LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen. Research Progress of Oxides Thermoelectric Materials [J]. Journal of Inorganic Materials, 2014, 29(3): 237-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||