Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 629-636.DOI: 10.15541/jim20200495
Special Issue: 能源材料论文精选(2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【虚拟专辑】太阳能电池(2020~2021); 【能源环境】钙钛矿; 【能源环境】太阳能电池
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Wenwen1(), HU Zhilei1, WANG Li1, CAO Mengsha1, ZHANG Jing1, ZHANG Jing1, ZHANG Shuai1(), YUAN Ningyi1, DING Jianning2()
Received:
2020-08-27
Revised:
2020-10-22
Published:
2021-06-20
Online:
2020-11-05
Contact:
ZHANG Shuai, associate professor. E-mail: shuaizhang@cczu.edu.cn; DING Jianning, professor. E-mail: dingjn@cczu.edu.cn
About author:
LIU Wenwen(1997-), female, Master candidate. E-mail: 2356143925@qq.com
Supported by:
CLC Number:
LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell[J]. Journal of Inorganic Materials, 2021, 36(6): 629-636.
Fig. 2 (a,b) Surface and (c,d) cross sectional SEM images, (e,f) grain size distributions of FTO/TiO2/perovskite films (a, c, e) without and (b, d, f) with PLA
Fig. 3 (a) ATR-FT-IR spectra, ((b) magnified ATR-FT-LR spectra of rectangular area in (a)), (c) UV-Vis absorption spectra and (d) XRD patterns of FTO/TiO2/perovskite films with and without PLA
Device | JSC(SD)/(mA·cm-2) | VOC(SD)/V | FF(SD)/% | PCE(SD)/% |
---|---|---|---|---|
Without PLA | 23.84(0.74) | 1.07(0.02) | 76.80(1.15) | 19.49(0.48) |
With PLA | 24.37(0.50) | 1.07(0.02) | 78.74(1.43) | 20.55(0.39) |
Table 1 Mean values and standard deviation (SD) of photovoltaic parameters for PSC devices without and with PLA
Device | JSC(SD)/(mA·cm-2) | VOC(SD)/V | FF(SD)/% | PCE(SD)/% |
---|---|---|---|---|
Without PLA | 23.84(0.74) | 1.07(0.02) | 76.80(1.15) | 19.49(0.48) |
With PLA | 24.37(0.50) | 1.07(0.02) | 78.74(1.43) | 20.55(0.39) |
Fig. 5 Forward and reverse scan J-V curves of the optimal PSC devices (a) without and (b) with PLA, (c) comparison of the reverse J-V curves, and (d) external quantum efficiency spectra and integrated JSC curves for the optimal PSC devices without and with PLA
Fig. 7 (a) Schematic diagram of electron-only perovskite film device with PLA, and (b) SCLC measurements of electron-only perovskite film devices with and without PLA
Device | RS / (Ω·cm-2) | R1 / (Ω·cm-2) | R2 / (Ω·cm-2) |
---|---|---|---|
Without PLA (Illumination) | 1.80 | 58.70 | 7.90 |
With PLA (Illumination) | 1.43 | 15.74 | 40.49 |
Without PLA (Dark) | 0.78 | 3.46×105 | 2.27×104 |
With PLA (Dark) | 1.21 | 2.15×104 | 4.50×105 |
Table S1 EIS fitting parameters of PSC without and with PLA under illumination and in dark
Device | RS / (Ω·cm-2) | R1 / (Ω·cm-2) | R2 / (Ω·cm-2) |
---|---|---|---|
Without PLA (Illumination) | 1.80 | 58.70 | 7.90 |
With PLA (Illumination) | 1.43 | 15.74 | 40.49 |
Without PLA (Dark) | 0.78 | 3.46×105 | 2.27×104 |
With PLA (Dark) | 1.21 | 2.15×104 | 4.50×105 |
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009,131(17):6050-6051.
DOI URL |
[2] | Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. |
[3] |
GREEN M A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt: Res. Appl., 2009,17:183-189.
DOI URL |
[4] |
XIONG H, ZHANG B X, JIA W, et al. Polymer PVP additive for improving stability of perovskite solar cells. J. Inorg. Mater., 2019,34(1):96-102.
DOI URL |
[5] | YU S W, ZHAO Z W, ZHAO J J, et al. Research progress in novel in-situ integrative photovoltaic-storage tandem cells. J. Inorg. Mater., 2020,35(6):623-632. |
[6] |
CHU Z Y, LI G L, JIANG Z H, et al. Recent progress in high-quality perovskite CH3NH3PbI3 single crystal. J. Inorg. Mater., 2018,33(10):1035-1045.
DOI URL |
[7] |
PATIL J V, MALI S S, HONG C K. A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells. Nanoscale, 2019,11:21824-21833.
DOI URL |
[8] |
ZHANG S, LU Y T, LIN B C, et al. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance. Sol. Energy Mat. Sol. C, 2017,170:178-186.
DOI URL |
[9] |
ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2017,2:17102.
DOI URL |
[10] |
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016,10:2071-2081.
DOI URL |
[11] |
YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 2019,141(14):5781-5787.
DOI URL |
[12] |
BARLY I L, DEQUILETTES D W, PAZOS-QUTON, et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photonics, 2018,12:355-361.
DOI URL |
[13] |
YANG J, LIU C, CAI C, et al. High performance perovskite solar cells with excellent humidity and thermo stability via fluorinated perylenediimide. Adv. Energy. Mater., 2019,9(18):1900198.
DOI URL |
[14] |
ZHANG S, HU Z L, ZHANG J, et al. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability. J. Power Sources, 2019,438:226987.
DOI URL |
[15] |
WANG H H, WANG Z W, YANG Z, et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater., 2020,32(21):2000865.
DOI URL |
[16] |
NIU T Q, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018,30(16):1706576.
DOI URL |
[17] |
DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 2014,5(6):1035-1039.
DOI URL |
[18] |
STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013,342(6156):341-344.
DOI URL |
[19] |
CHEN J H, ZUO L J, ZHANG Y Z, et al. High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater., 2018,8(23):1800438.
DOI URL |
[20] |
WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc., 2018,140(33):10504-10513.
DOI URL |
[21] |
IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol., 2014,9(181):927-932.
DOI URL |
[22] |
LIU Y, MONOJIT B, LAWRENCE A R, et al. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy Mater., 2015,6:1501606.
DOI URL |
[23] |
WU Y H, WANG P, ZHANG W H. Heterojunction engineering for high efficiency cesium formamidinium double-cation lead halide perovskite solar cells. ChemSusChem, 2018,11(5):837-842.
DOI URL |
[24] |
HOU Y, DU X Y, SIMON S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017,358(6367):1192-1197.
DOI URL |
[25] |
ZHANG J, SUN Q, CHEN Q Y, et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater, 2019,29:1900484.
DOI URL |
[26] | CHEN H Y, ZHAN Y, XU G Y, et al. Organic n-type molecule: managing the electronic states of bulk perovskite for high-performance photovoltaics. Adv. Funct. Mater., 2020,120(6):8267-8302. |
[27] |
DEQUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015,348(6235):683-686.
DOI URL |
[28] |
WANG L, LIU H, LIU C W, et al. Approaching optimal hole transport layers by organic monomolecular strategy for efficient inverted perovskite solar cells. J. Mater. Chem. A, 2020,4(6):1-21.
DOI URL |
[29] |
HOU M N, XU Y Z, ZHOU B, et al. Aryl diammonium iodide passivation for efficient and stable hybrid organ-inorganic perovskite solar cells. Adv. Funct. Mater., 2020,30(34):2002366.
DOI URL |
[30] |
SON D Y, KIM S G, SEO J Y, et al. Universal approach toward hysteresis free perovskite solar cell via defect engineering. J. Am. Chem. Soc., 2018,140(4):1358-1364.
DOI URL |
[31] |
GUERRERO A, GARCIA-BELMONTE, MORA-SERO I, et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C, 2016,120(15):8023-8032.
DOI URL |
[32] |
WANG Q, MOSER J E, GRTZEL M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B, 2005,109(31):14945-53.
DOI URL |
[33] |
ZHANG S, DONG G Y, LIN B C, et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells. J. Power Sources, 2015,277:52-58.
DOI URL |
[34] |
ZHANG S, DONG G Y, LIN B C, et al. Performance enhancement of aqueous dye-sensitized solar cells via introduction of a quasi- solid-state electrolyte with an inverse opal structure. Sol Energy, 2016,127:19-27.
DOI URL |
[35] |
YANG J A, XIAO A D, XIE L S, et al. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta, 2020,338:135697.
DOI URL |
[1] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[2] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[3] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[4] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
[5] | YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells [J]. Journal of Inorganic Materials, 2020, 35(6): 623-632. |
[6] | XIONG Hao, ZHANG Bo-Xin, JIA Wei, ZHANG Qing-Hong, XIE Hua-Qing. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2019, 34(1): 96-102. |
[7] | XU Shun-Jian, XIAO Zong-Hu, LUO Xiao-Rui, ZHONG Wei, LOU Yong-Ping, OU Hui. Cooperative Effect of Carbon Nanotubes and Dimethyl Sulfoxide on PEDOT:PSS Hole Transport Layer in Planar Perovskite Solar cells [J]. Journal of Inorganic Materials, 2018, 33(6): 641-647. |
[8] | ZHANG Min, WANG Zeng-Hua, ZHENG Xiao-Jia, ZHANG Wen-Hua. Structural Effect of TiO2 on the Performance of MAPbBr3 Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(2): 245-250. |
[9] | WANG Wei-Qi, ZHENG Hui-Feng, LU Guan-Hong, LIU Yang-Qiao, SUN Jing, GAO Lian. Recent Progress on Applications of Nano Metal Oxides in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(9): 897-907. |
[10] | LIU Chang, YUAN Shuai, ZHANG Hai-Liang, CAO Bing-Qiang, WU Li-Li, YIN Long-Wei. p-type CuI Films Grown by Iodination of Copper and Their Application As Hole Transporting Layers for Inverted Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(4): 358-364. |
[11] | FAN Ping, GU Di, LIANG Guang-Xing, LUO Jing-Ting, ZHANG Dong-Ping, CHEN Ju-Long. Growth and Characterization of Hybrid Organolead Halide CH3NH3PbI3 Thin Films Prepared by Single Source Thermal Evaporation [J]. Journal of Inorganic Materials, 2015, 30(10): 1105-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||