Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (11): 1181-1191.DOI: 10.15541/jim20220089
• REVIEW • Previous Articles Next Articles
LEI Weiyan1(), WANG Yue2, WU Shiran2, SHI Dongxin2, SHEN Yi1,2(
), LI Fengfeng2
Received:
2022-02-23
Revised:
2022-03-17
Published:
2022-11-20
Online:
2022-05-09
Contact:
SHEN Yi, professor. E-mail: shenyilzt@163.comAbout author:
LEI Weiyan (1992-), male, PhD candidate. E-mail: leiphd@163.com
Supported by:
CLC Number:
LEI Weiyan, WANG Yue, WU Shiran, SHI Dongxin, SHEN Yi, LI Fengfeng. 2D Nanomaterials from Group VA Single-element: Research Progress in Biomedical Fields[J]. Journal of Inorganic Materials, 2022, 37(11): 1181-1191.
Fig. 3 Schematic illustration of black phosphorus (BP) field effect transistor (FET) biosensor for IgG detection[62] The color figure can be obtained from online edition
Fig. 5 Schematic illustration of the degradation process of the PLGAylated black phosphorus quantum dots (BPQDs/PLGA) nanospheres in the physiological environment[52] The color figure can be obtained from online edition
Fig. 7 Schematic illustration of the preparation of PEGylated arsenic nanodots (AsNDs@PEG) and their application to normal and cancer cells[67] The color figure can be obtained from online edition
Fig. 8 Photothermal effects of PEG-modified antimonene quantum dots (a) Infrared images of tumor-bearing mice under different treatments. (G1: saline; G2: NIR only; G3: PEG-modified antimonene quantum dots; G4: PEG-modified antimonene quantum dots + NIR (808 nm, 1 W·cm-2)); (b) Temperature changes at the tumor site; (c) Relative tumor volume; (d) Representative images of tumors harvested at 14 d[68]The color figures can be obtained from online edition
Fig. 9 Schematic illustration of synthetic procedure of 2D multifunctional bismuthene and followed surface modification with bovine serum albumin (BSA), and underlying biomedical applications in multimodal photoacoustic imaging (PAI)/computed tomography (CT) imaging guided photonic cancer treatment (synergistic Photothermal Therapy (PTT) and Photodynamic Therapy (PDT))[70] The color figure can be obtained from online edition
[1] |
HUANG H, FENG W, CHEN Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50(20): 11381-11485.
DOI PMID |
[2] |
WANG C, ZHAN Y, WANG Z. TiO2, MoS2, and TiO2/MoS2 heterostructures for use in organic dyes degradation. ChemistrySelect, 2018, 3(6): 1713-1718.
DOI URL |
[3] |
LIANG B, ZHANG W. BN nanosheet modified SnO materials for enhancing photocatalytic properties. International Journal of Materials Research, 2020, 111(2): 177-182.
DOI URL |
[4] |
DUAN S F, TAO C L, GENG Y Y, et al. Phosphorus-doped isotype g-C3N4/g-C3N4: an efficient charge transfer system for photoelectrochemical water oxidation. ChemCatChem, 2019, 11(2): 729-736.
DOI URL |
[5] | LI W, LIU D, YANG N, et al. Molybdenum diselenide-black phosphorus heterostructures for electrocatalytic hydrogen evolution. Applied Surface Science, 2019, 467: 328-334. |
[6] |
WU Q, CHEN G, GONG K, et al. MnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapy. Matter, 2019, 1(2): 496-512.
DOI URL |
[7] | HUANG H, XIAO Q, WANG J, et al. Black phosphorus: a two- dimensional reductant for in situ nanofabrication. npj 2D Materials and Applications, 2017, 1: 20-8. |
[8] | JANA D, JIA S R, BINDRA A K, et al. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Applied Materials & Interfaces, 2020, 12(16): 18342-18351. |
[9] |
QI F, JI P, CHEN Z, et al. Photosynthetic cyanobacteria-hybridized black phosphorus nanosheets for enhanced tumor photodynamic therapy. Small, 2021, 17(42): 2102113-9.
DOI URL |
[10] |
LIU J, YI K, ZHANG Q, et al. Strong penetration-induced effective photothermal therapy by exosome-mediated black phosphorus quantum dots. Small, 2021, 17(49): 2104585-9.
DOI URL |
[11] |
OUYANG J, FENG C, ZHANG X, et al. Black phosphorus in biological applications: evolutionary journey from monoelemental materials to composite materials. Accounts of Materials Research, 2021, 2(7): 489-500.
DOI URL |
[12] | LATIFF N M, MAYORGA-MARTINEZ C C, SOFER Z, et al. Cytotoxicity of phosphorus allotropes (black, violet, red). Applied Materials Today, 2018, 13: 310-319. |
[13] |
LATIFF N M, TEO W Z, SOFER Z, et al. The cytotoxicity of layered black phosphorus. Chemistry-a European Journal, 2015, 21(40): 13991-13995.
DOI PMID |
[14] |
LI Q, HUANG H, CHEN Z, et al. Thickness-dependent structural stability and anisotropy of black phosphorus. Advanced Electronic Materials, 2019, 5(3): 1800712-5.
DOI URL |
[15] |
ZHAO Y, WANG H, HUANG H, et al. Surface coordination of black phosphorus for robust air and water stability. Angewandte Chemie International Edition, 2016, 55(16): 5003-5007.
DOI URL |
[16] |
KIM J, BAEK S K, KIM K S, et al. Long-term stability study of graphene-passivated black phosphorus under air exposure. Current Applied Physics, 2016, 16(2): 165-169.
DOI URL |
[17] |
CHIA H L, LATIFF N M, GUSMAO R, et al. Cytotoxicity of shear exfoliated pnictogen (As, Sb, Bi) nanosheets. Chemistry-a European Journal, 2019, 25(9): 2242-2249.
DOI PMID |
[18] |
ZHOU W, PAN T, CUI H, et al. Black phosphorus: bioactive nanomaterials with inherent and selective chemotherapeutic effects. Angewandte Chemie-International Edition, 2019, 58(3): 769-774.
DOI URL |
[19] |
QU G, XIA T, ZHOU W, et al. Property-activity relationship of black phosphorus at the nano-bio interface: from molecules to organisms. Chemical Reviews, 2020, 120(4): 2288-2346.
DOI PMID |
[20] | XUE T, LIANG W, LI Y, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications, 2019, 10: 28-9. |
[21] |
DENG N, TIAN H, ZHANG J, et al. Black phosphorus junctions and their electrical and optoelectronic applications. Journal of Semiconductors, 2021, 42(8): 081001-13.
DOI URL |
[22] |
HAN R, FENG S, SUN D, et al. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Science China-Information Sciences, 2021, 64(4): 140402-14.
DOI URL |
[23] | ZHOU L, LIU C, SUN Z, et al. Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosensors & Bioelectronics, 2019, 137: 140-147. |
[24] | SRIVASTAVA A, VERMA A, DAS R, et al. A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik, 2020, 203: 163430. |
[25] |
SU M, CHEN X, TANG L, et al. Black phosphorus (BP)-graphene guided-wave surface plasmon resonance (GWSPR) biosensor. Nanophotonics, 2020, 9(14): 4265-4272.
DOI URL |
[26] | PENG F, ZHAO F, SHAN L, et al. Black phosphorus nanosheets- based platform for targeted chemo-photothermal synergistic cancer therapy. Colloids and Surfaces B-Biointerfaces, 2021, 198: 111467-13. |
[27] | AKSOY I, KUCUKKECECI H, SEVGI F, et al. Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Applied Materials & Interfaces, 2020, 12(24): 26822-26831. |
[28] | ZHANG D, LIU H M, SHU X, et al. Nanocopper-loaded black phosphorus nanocomposites for efficient synergistic antibacterial application. Journal of Hazardous Materials, 2020, 393: 122317-9. |
[29] | LIU W, ZHU Y, LIU Q, et al. 2D black phosphorus-based cytomembrane mimics with stimuli-responsive antibacterial action inspired by endotoxin-associated toxic behavior. ACS Applied Materials & Interfaces, 2021, 13(36): 43820-43829. |
[30] |
JING Y, TANG Q, HE P, et al. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26(9): 095201-9.
DOI URL |
[31] | XIA F, WANG H, JIA Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458-6. |
[32] | QIAO J, KONG X, HU Z, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5: 4475-7. |
[33] |
WEI Q, PENG X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014, 104(25): 251915-5.
DOI URL |
[34] |
XU F, MA H, LEI S, et al.. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene. Nanoscale, 2016, 8(28): 13603-13610.
DOI URL |
[35] |
LV H Y, LU W J, SHAO D F, et al. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B, 2014, 90(8): 085433-8.
DOI URL |
[36] |
FEI R, FAGHANINIA A, SOKLASKI R, et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393-6399.
DOI URL |
[37] | EZAWA M. Topological origin of quasi-flat edge band in phosphorene. New Journal of Physics, 2014, 16: 115004-13. |
[38] |
SANSONE G, MASCHIO L, USVYAT D, et al. Toward an accurate estimate of the exfoliation energy of black phosphorus: a periodic quantum chemical approach. Journal of Physical Chemistry Letters, 2016, 7(1): 131-136.
DOI PMID |
[39] |
SHULENBURGER L, BACZEWSKI A D, ZHU Z, et al. The nature of the inter layer interaction in bulk and few-layer phosphorus. Nano Letters, 2015, 15(12): 8170-8175.
DOI URL |
[40] |
APPALAKONDAIAH S, VAITHEESWARAN G, LEBEGUE S, et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Physical Review B, 2012, 86(3): 035105-9.
DOI URL |
[41] | KANG J, WELLS S A, WOOD J D, et al. Stable aqueous dispersions of optically and electronically active phosphorene. Proceeding of The National Academy of Sciences of The United States of America, 2016, 113(42): 11688-11693. |
[42] |
TAN Z, YIN Y, GUO X, et al. Natural organic matter inhibits aggregation of few-layered black phosphorus in mono- and divalent-electrolyte solutions. Environmental Science-Nano, 2019, 6(2): 599-609.
DOI URL |
[43] |
CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014, 1(2): 025001.
DOI URL |
[44] |
LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033-4041.
DOI PMID |
[45] |
GUO Z, ZHANG H, LU S, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Advanced Functional Materials, 2015, 25(45): 6996-7002.
DOI URL |
[46] |
YAN K, LEE H W, GAO T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Letters, 2014, 14(10): 6016-1022.
DOI PMID |
[47] |
ZHANG X, XIE H, LIU Z, et al. Black phosphorus quantum dots. Angewandte Chemie International Edition, 2015, 54(12): 3653-3657.
DOI URL |
[48] |
WOOD J D, WELLS S A, JARIWALA D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters, 2014, 14(12): 6964-6970.
DOI PMID |
[49] |
KANG J, WOOD J D, WELLS S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9(4): 3596-3604.
DOI PMID |
[50] |
BATMUNKH M, BAT-ERDENE M, SHAPTER J G. Phosphorene and phosphorene-based materials-prospects for future applications. Advanced Materials, 2016, 28(39): 8586-8617.
DOI URL |
[51] | HANLON D, BACKES C, DOHERTY E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6: 8563-11. |
[52] | SHAO J, XIE H, HUANG H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7: 12967-13. |
[53] |
WANG M, LIANG Y, LIU Y, et al. Ultrasmall black phosphorus quantum dots: synthesis, characterization, and application in cancer treatment. Analyst, 2018, 143(23): 5822-5833.
DOI PMID |
[54] | KUMAR V, BRENT J R, SHORIE M, et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Applied Materials & Interfaces, 2016, 8(35): 22860-22868. |
[55] |
WAN B, YANG B, WANG Y, et al. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology, 2015, 26(43): 435702-6.
DOI URL |
[56] |
ZHANG L, OUYANG G. Size-dependent interface thermal conductance in black phosphorus/SiO2 heterojunctions. Journal of Physics D-Applied Physics, 2019, 52(2): 025302-19.
DOI URL |
[57] |
ABDERRAHMANE A, WOO C, KO P J. Black phosphorus/ molybdenum diselenide heterojunction-based photodetector. Journal of Electronic Materials, 2021, 50(10): 5713-5720.
DOI URL |
[58] |
RUBIO-BOLLINGER G, GUERRERO R, DE LARA D P, et al. Enhanced visibility of MoS2, MoSe2, WSe2 and black-phosphorus: making optical identification of 2D semiconductors easier. Electronics, 2015, 4(4): 847-856.
DOI URL |
[59] |
JIANG X, ZHANG M, LIU L, et al. Multifunctional black phosphorus/MoS2 van der Waals heterojunction. Nanophotonics, 2020, 9(8): 2487-2493.
DOI URL |
[60] | ZHU J, ZHANG J, XU S, et al. Unintentional doping effects in black phosphorus by native vacancies in h-BN supporting layer. Applied Surface Science, 2017, 402: 175-181. |
[61] |
AVSAR A, TAN J Y, LUO X, et al. van der Waals bonded Co/h- BN contacts to ultrathin black phosphorus devices. Nano Letters, 2017, 17(9): 5361-5367.
DOI URL |
[62] | CHEN Y, REN R, PU H, et al. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosensors & Bioelectronics, 2017, 89: 505-510. |
[63] |
ZHANG S, GUO S, CHEN Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47(3): 982-1021.
DOI PMID |
[64] | HU Y, LIANG J, XIA Y, et al. 2D arsenene and arsenic materials: fundamental properties, preparation, and applications. Small, 2022, 18: 2104556-25. |
[65] |
TAO W, KONG N, JI X, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2019, 48(11): 2891-2912.
DOI PMID |
[66] |
ARES P, PALACIOS J J, ABELLAN G, et al. Recent progress on antimonene: a new bidimensional material. Advanced Materials, 2018, 30(2): 1703771-27.
DOI URL |
[67] |
LIU C, SUN S, FENG Q, et al. Arsenene nanodots with selective killing effects and their low-dose combination with ss-elemene for cancer therapy. Advanced Materials, 2021, 33(37): 2102054-14.
DOI URL |
[68] |
TAO W, JI X, XU X, et al. Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angewandte Chemie International Edition, 2017, 56(39): 11896-11900.
DOI URL |
[69] |
LIU C, SHIN J, SON S, et al. Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chemical Society Reviews, 2021, 50(4): 2260-2279.
DOI PMID |
[70] |
WANG Y, FENG W, CHANG M, et al. Engineering 2D multifunctional ultrathin bismuthene for multiple photonic nanomedicine. Advanced Functional Materials, 2021, 31(6): 2005093-12.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||