Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (11): 1170-1180.DOI: 10.15541/jim20220158
• REVIEW • Previous Articles Next Articles
HUANG Tian1,2,3(), ZHAO Yunchao1,2,3, LI Linlin2,3,4(
)
Received:
2022-03-21
Revised:
2022-04-24
Published:
2022-11-20
Online:
2022-06-16
Contact:
LI Linlin, professor. E-mail: lilinlin@binn.cas.cnAbout author:
HUANG Tian (1996-), female, Master candidate. E-mail: huangtian@binn.cas.cn
Supported by:
CLC Number:
HUANG Tian, ZHAO Yunchao, LI Linlin. Piezoelectric Semiconductor Nanomaterials in Sonodynamic Therapy: a Review[J]. Journal of Inorganic Materials, 2022, 37(11): 1170-1180.
Fig. 1 Structural characteristics of piezoelectric semiconductors[24] (a,b) Crystal structures of (a) perovskite BaTiO3 and (b) wurtzite ZnO; (c) Influence of stacking on the piezoelectric effect of MoS2 at crystal structure of (i) single-layer, (ii) 2H and (iii) 3R
Fig. 2 Cavitation effect and sonoluminescence (SL)[25] (a) Schematic of cavitation effect with ultrasound; (b) Illustration of SL-excited photocatalysis
Fig. 3 Schematic of piezocatalysis[32] (a) Original electrostatic balance state of a poled piezoelectric material; (b) Charge release and ROS production under stress; (c) Modified electrostatic balance state under maximum stress; (d) Adsorption of charges from the surrounding electrolyte under reduced stress, and the opposite charges in the electrolyte are involved in ROS production
Fig. 4 Influence of piezo-phototronic effect on carrier migration[34] (a) Semiconductor-electrolyte; (b) Metal-semiconductor; (c) Type-II; (d) Z-scheme CB: Conduction band; VB: Valence band; SC: Semiconductor
Application | Nanomaterial | Frequency/MHz | Power/(W·cm-2) | Duty ratio/% | Duration/min | Ref. |
---|---|---|---|---|---|---|
Cancer treatment | BP | 1 | 1.5 | - | 10 (4 times) | [ |
T-BTO | 1 | 1.0 | 50 | 10 (3 times) | [ | |
Bi2MoO6 | 0.04 | 3.0 | 50 | 5 (3 times) | [ | |
Au@BP | 1 | 2.0 | 40 | 2.5 (4 times) | [ | |
D-ZnOx:Gd | 1 | 1.0 | 50 | - | [ | |
Antibacteria | HNTM-MoS2 | 1 | 1.5 | 50 | 15 (Twice) | [ |
Au@BTO | 1 | 1.5 | 50 | 3 (Once) | [ |
Table 1 Parameters of ultrasonic excitation devices used in animal experiments of sonodynamic therapy with piezoelectric semiconductor nanomaterials
Application | Nanomaterial | Frequency/MHz | Power/(W·cm-2) | Duty ratio/% | Duration/min | Ref. |
---|---|---|---|---|---|---|
Cancer treatment | BP | 1 | 1.5 | - | 10 (4 times) | [ |
T-BTO | 1 | 1.0 | 50 | 10 (3 times) | [ | |
Bi2MoO6 | 0.04 | 3.0 | 50 | 5 (3 times) | [ | |
Au@BP | 1 | 2.0 | 40 | 2.5 (4 times) | [ | |
D-ZnOx:Gd | 1 | 1.0 | 50 | - | [ | |
Antibacteria | HNTM-MoS2 | 1 | 1.5 | 50 | 15 (Twice) | [ |
Au@BTO | 1 | 1.5 | 50 | 3 (Once) | [ |
Fig. 5 Anti-tumor application of piezoelectric semiconductor nanomaterials in SDT enhanced by band tilt under ultrasound irradiation[39⇓-41] (a, b)Band structures of (a) black phosphorus (BP) nanosheets[39] and (b) T-BaTiO3 nanoparticles[40]; (c) Bi2MoO6 nanorods (BMO NRs) and GSH-activated BMO NRs (GBMO NRs) and their ROS generation under ultrasonic irradiation[41];CB: Conduction band; VB: Valence band; RHE: Relative hyedrogen electrode; NHE: Normal hydrogen electrode
Fig. 6 Efficiency of SDT improved by constructing heterojunction or introducing defects on piezoelectric semiconductor nanomaterials[42-43] (a) i: Schematic diagram of the preparation and SDT treatment with Au@BP, ii: Time-dependent fluorescence of singlet oxygen sensor green (SOSG) under ultrasound irradiation, iii: Intracellular ROS level after different treatments[42] with (1-6) indicate blank, ultrasound, BP nanosheets, Au@BP nanohybrids, BP nanosheets with ultrasound, and Au@BP nanohybrids with ultrasound, respectively; (b) i: Schematic illustration of D-ZnOx:Gd under ultrasound irradiation, ii: Strucure of defect-free ZnO and defect-rich D-ZnOx:Gd and their adsorption energies with O2 and H2O [43] BP: Black phosphorus; CB: Conduction band; VB: Valence band
Fig. 7 Application of piezoelectric semiconductor nanomaterials in anti-bacterial[44-45] (a) i: HRTEM image of WS2 NFs, ii: Piezo force microscopy image and 3D piezoelectric potential image of WS2 NFs, iii: •OH and 1O2 were measured by electron spin-resonance spectroscopy (EPR), iv: Antibacterial properties of WS2 NFs against E. coli after ultrasound treatment; (b) Sonodynamic mechanism of porphyrin-based hollow metal-organic framework-MoS2 (HNTM-MoS2) and therapy on osteomyelitis; MRSA: Methicillin-resistant S. aureus; LUMO: Lowest unoccupied molecular orbital; HOMO: Highest occupied molecular orbital; HNTM: Hollow metal-organic framework; RBC: Red blood cell; iNOS: Inducible nitric oxide synthase; TGF-β: Transforming growth factor-β
Fig. 8 Au@BTO for bacterial elimination and wound healing[46] (a) Mechanism of sonodynamic therapy using Au@BTO under ultrasound irradiation; (b) Sonodynamic antibacterial effect of Au@BTO against E. coli and S. aureus; (c) Representative photographs of mouse S. aureus infected wounds at different time (d) Representative images of NIH-3T3 cell migration; NHE: Normal hydrogen electrode; US: Ultrasound
[1] |
BODEGA G, ALIQUE M, PUEBLA L, et al. Microvesicles: ROS scavengers and ROS producers. Journal of Extracellular Vesicles, 2019, 8(1): 1626654-10.
DOI URL |
[2] | CAO Z, LI D, WANG J, et al. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomaterialia, 2021, 130: 17-31. |
[3] | HE Y, HUA LIU S, YIN J, et al. Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers. Coordination Chemistry Reviews, 2021, 429: 213610-21. |
[4] |
YANG B, CHEN Y, SHI J. Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews, 2019, 119(8): 4881-4985.
DOI PMID |
[5] |
YUMITA N, NISHIGAKI R, UMEMURA K, et al. Hematoporphy- rin as a sensitizer of cell-damaging effect of ultrasound. Japanese Journal of Cancer Research, 1989, 80(3): 219-222.
DOI URL |
[6] | LIU R, ZHANG Q, LANG Y, et al. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2017, 19: 159-166. |
[7] |
WANG H, PAN X, WANG X, et al. Degradable carbon-silica nano-composite with immunoadjuvant property for dual-modality photother-mal/photodynamic therapy. ACS Nano, 2020, 14(3): 2847-2859.
DOI URL |
[8] |
YAO S, ZHAO X, WAN X, et al. π-π conjugation promoted nano-catalysis for cancer therapy based on a covalent organic framework. Materials Horizons, 2021, 8(12): 3457-3467.
DOI URL |
[9] |
DEEPAGAN V G, YOU D G, UM W, et al. Long-circulating Au- TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Letters, 2016, 16(10): 6257-6264.
DOI URL |
[10] |
GONG F, CHENG L, YANG N, et al. Ultrasmall oxygen-deficient bimetallic oxide MnWOx nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Advanced Materials, 2019, 31(23): 1900730-9.
DOI URL |
[11] |
ZHONG X, WANG X, CHENG L, et al. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Advanced Functional Materials, 2020, 30(4): 1907954-12.
DOI URL |
[12] |
ZHANG H, PAN X, WU Q, et al. Manganese carbonate nanoparti-cles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy. Exploration, 2021, 1(2): 20210010-12.
DOI URL |
[13] |
ZHU L, WANG Z L. Recent progress in piezo-phototronic effect enhanced solar cells. Advanced Functional Materials, 2019, 29(41): 1808214-18.
DOI URL |
[14] |
CHORSI M T, CURRY E J, CHORSI H T, et al. Piezoelectric biomaterials for sensors and actuators. Advanced Materials, 2019, 31(1): 1802084-15.
DOI URL |
[15] |
XU Q, GAO X, ZHAO S, et al. Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Advanced Materials, 2021, 33(27): 2008452-28.
DOI URL |
[16] |
WANG W, XU M, XU X, et al. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angewandte Chemie International Edition, 2020, 59(1): 136-152.
DOI URL |
[17] | YU X, WANG S, ZHANG X, et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy, 2018, 46: 29-38. |
[18] |
MANNA S, TALLEY K R, GORAI P, et al. Enhanced piezoelectric response of AlN via CrN alloying. Physical Review Applied, 2018, 9(3): 34026-15.
DOI URL |
[19] |
WANG Z L. Progress in piezotronics and piezo-phototronics. Advanced Materials, 2012, 24(34): 4632-4646.
DOI URL |
[20] | PANDEY R K, DUTTA J, BRAHMA S, et al. Review on ZnO- based piezotronics and piezoelectric nanogenerators: aspects of pie-zopotential and screening effect. Journal of Physics: Materials, 2021, 4: 44011-22. |
[21] |
GHASEMIAN M B, DAENEKE T, SHAHRBABAKI Z, et al. Peculiar piezoelectricity of atomically thin planar structures. Nanoscale, 2020, 12(5): 2875-2901.
DOI PMID |
[22] |
HINCHET R, KHAN U, FALCONI C, et al. Piezoelectric properties in two-dimensional materials: simulations and experiments. Materials Today, 2018, 21(6): 611-630.
DOI URL |
[23] | WU J M. Piezo-catalytic effect on the enhancement of the ultra- high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Advanced Matericals, 2016, 28(19): 3718-3725. |
[24] | WANG Z L, WILLATZEN M. Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy, 2019, 56: 512-515. |
[25] |
UM W, E K P K, LEE J, et al. Recent advances in nanomaterial- based augmented sonodynamic therapy of cancer. Chemical Communications, 2021, 57(23): 2854-2866.
DOI URL |
[26] |
XU H, SUSLICK K S. Molecular emission and temperature meas- urements from single-bubble sonoluminescence. Physical Review Letters, 2010, 104(24): 244301-4.
DOI URL |
[27] |
DIDENKO Y T, SUSLICK K S. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature, 2002, 418(6896): 394-397.
DOI URL |
[28] |
NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 2017, 117(17): 11302-11336.
DOI PMID |
[29] |
LI Y, XIE J, UM W, et al. Sono/photodynamic nanomedicine-elicited cancer immunotherapy. Advanced Functional Materials, 2021, 31(12): 2008061-25.
DOI URL |
[30] | CURIE J, CURIE P. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société Chimique de France, 1880, 91: 294-295. |
[31] |
WU J, MAO W, WU Z, et al. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. Nanoscale, 2016, 8(13): 7343-7350.
DOI URL |
[32] |
WANG Y, WEN X, JIA Y, et al. Piezo-catalysis for nondestructive tooth whitening. Nature Communications, 2020, 11(1): 1328-11.
DOI PMID |
[33] |
WANG Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 2010, 5(6): 540-552.
DOI URL |
[34] |
PAN L, SUN S, CHEN Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 2020, 10(15): 2000214-25.
DOI URL |
[35] |
KANG Y, LEI L, ZHU C, et al. Piezo-photocatalytic effect mediat- ing reactive oxygen species burst for cancer catalytic therapy. Materials Horizons, 2021, 8(8): 2273-2285.
DOI URL |
[36] |
ZHU L, WANG Z L. Progress in piezotronics and piezo-phototronics of quantum materials. Journal of Physics D: Applied Physics, 2019, 52(34): 343001-25.
DOI URL |
[37] | ZHOU Z, YUAN S, WANG J. Theoretical progress on direct z-scheme photocatalysis of two-dimensional heterostructures. Frontiers of Physics, 2021, 16(4): 1-9. |
[38] |
ZHOU P, YU J, JARONIEC M. All-solid-state z-scheme photocata- lytic systems. Advanced Materials, 2014, 26(29): 4920-4935.
DOI URL |
[39] |
LI Z, ZHANG T, FAN F, et al. Piezoelectric materials as sono- dynamic sensitizers to safely ablate tumors: a case study using black phosphorus. Journal of Physical Chemistry Letters, 2020, 11(4): 1228-1238.
DOI URL |
[40] |
ZHU P, CHEN Y, SHI J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Advanced Materials, 2020, 32(29): 2001976-8.
DOI URL |
[41] |
DONG Y, DONG S, LIU B, et al. 2D piezoelectric Bi2MoO6nano- ribbons for GSH-enhanced sonodynamic therapy. Advanced Materials, 2021, 33(51): 2106838-11.
DOI URL |
[42] |
OUYANG J, DENG L, CHEN W, et al. Two dimensional semicon- ductors for ultrasound-mediated cancer therapy: the case of black phos-phorus nanosheets. Chemical Communications, 2018, 54(23): 2874-2877.
DOI URL |
[43] | LIU Y, WANG Y, ZHEN W, et al. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials, 2020, 251: 120075-9. |
[44] | MASIMUKKU S, HU Y C, LIN Z H, et al. High efficient degradation of dye molecules by PDMS embedded abundant singlelayer tungsten disulfide and their antibacterial performance. Nano Energy, 2018, 46: 338-346. |
[45] |
FENG X, MA L, LEI J, et al. Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomye-litis. ACS Nano, 2022, 16(2): 2546-2557.
DOI URL |
[46] | WU M, ZHANG Z, LIU Z, et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today, 2021, 37: 101104-12. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||