Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (9): 943-949.DOI: 10.15541/jim20200624
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Ziruo(), LIU Wei, HAO Ce, HU Jinwen, SHI Yantao(
)
Received:
2020-11-04
Revised:
2020-12-07
Published:
2021-09-20
Online:
2020-12-30
Contact:
SHI Yantao, professor. E-mail: shiyantao@dlut.edu.cn
About author:
LIU Ziruo(1996-), female, Master candidate. E-mail: lzr@mail.dlut.edu.cn
Supported by:
CLC Number:
LIU Ziruo, LIU Wei, HAO Ce, HU Jinwen, SHI Yantao. Honeycomb-like Carbon-supported Fe Single Atom Catalyst: Preparation and Electrocatalytic Performance in Oxygen Reduction Reaction[J]. Journal of Inorganic Materials, 2021, 36(9): 943-949.
Fig. 1 SEM images of (a) Fe-NC and (b)Fe SA-NC, (c)nitrogen adsorption/desorption plots of Fe SA-NC at 77 K, and (d) pore size distribution of Fe SA-NC
Element | C | N | O | Fe |
---|---|---|---|---|
Atomatic percent/% | 74.54 | 14.18 | 10.15 | 0.60 |
Table 1 XPS results of element composition in Fe SA-NC catalyst
Element | C | N | O | Fe |
---|---|---|---|---|
Atomatic percent/% | 74.54 | 14.18 | 10.15 | 0.60 |
Fig. 4 Fe K-edge (a) XANES spectra (b) k2-weighted FT spectra for the Fe SA-NC, FePc, FeO and Fe2O3 and (c) EXAFS fitting curves in R space for Fe SA-NC Insets in (c): EXAFS fitting curves in k space (up) and schematic models of Fe SA-NC (down); C (gray), N (blue), Fe (orange), O (red)
Sample | Path | N | R/nm | σ2/(×10-5, nm2) | ΔE0/eV | R factor |
---|---|---|---|---|---|---|
Fe SA-NC | Fe-N | 3.9 | 0.209 | 5.7 | 4.7 | 0.093 |
Fe-O | 1.0 | 0.190 | 5.7 | 4.7 | 0.093 |
Table 2 EXAFS fitting parameters of Fe SA-NC sample
Sample | Path | N | R/nm | σ2/(×10-5, nm2) | ΔE0/eV | R factor |
---|---|---|---|---|---|---|
Fe SA-NC | Fe-N | 3.9 | 0.209 | 5.7 | 4.7 | 0.093 |
Fe-O | 1.0 | 0.190 | 5.7 | 4.7 | 0.093 |
Fig. 5 (a) CV curves of the Fe SA-NC in a N2-saturated and O2-saturated 0.1 mol/L KOH solution, respectively; (b) LSV curves of Fe SA-NC, NC and Pt/C in O2-saturated 0.1 mol/L KOH solution (1600 r/min, 10 mV·s-1); (c) ORR polarization curves of Fe SA-NC recorded at different rotating speeds; (d) K-L plots derived from Fig. (c); (e) ORR electron transfer number and H2O2 yield of Fe SA-NC; (f) Tafel slopes of Fe SA-NC, NC and Pt/C in O2-saturated 0.1 mol/L KOH solution
[1] |
YANG X, WANG A, QIAO B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8):1740-1748.
DOI URL |
[2] |
QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8):634-641.
DOI URL |
[3] |
LIU P, ZHAO Y, QIN R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352(6287):797-801.
DOI URL |
[4] |
WEI H, LIU X, WANG A, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun., 2014, 5:5634.
DOI URL |
[5] | JIANG Z, WANG T, PEI J, et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy & Environmental Science, 2020, 13(9):2856-2863. |
[6] |
FEI H, DONG J, ARELLANO-JIMENEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun., 2015, 6:8668.
DOI URL |
[7] |
BAI L, HSU C S, ALEXANDER D T L, et al. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. Journal of the American Chemical Society, 2019, 141(36):14190-14199.
DOI URL |
[8] |
ZHANG J, ZHAO Y, CHEN C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc., 2019, 141(51):20118-20126.
DOI URL |
[9] |
PENG Y, LU B, CHEN S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Advanced Materials, 2018, 30(48):1801995.
DOI URL |
[10] |
GUPTA S, ZHAO S, OGOKE O, et al. Engineering favorable morphology and structure of Fe-N-C oxygen-reduction catalysts through tuning of nitrogen/carbon precursors. ChemSusChem, 2017, 10(4):774-785.
DOI URL |
[11] |
ZHAO K, NIE X, WANG H, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun., 2020, 11(1):2455.
DOI URL |
[12] |
LI J, CHEN S, YANG N, et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angewandte Chemie International Edition, 2019, 58(21):7035-7039.
DOI URL |
[13] |
LIU X, FECHLER N, ANTONIETTI M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chemical Society Reviews, 2013, 42(21):8237-8265.
DOI URL |
[14] |
HU J, WU D, ZHU C, et al. Melt-salt-assisted direct transformation of solid oxide into atomically dispersed FeN4 sites on nitrogen-doped porous carbon. Nano Energy, 2020, 72:104670.
DOI URL |
[15] | HE W, MA R, ZHU Y, et al. Renewable porous carbons prepared by KOH activation as oxygen reduction electrocatalysts. Journal of Inorganic Materials, 2019, 34(10):1115-1122. |
[16] |
MORAIS R G, REY-RAAP N, FIGUEIREDO J L, et al. Highly electroactive N-Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction. Journal of Energy Chemistry, 2020, 50:260-270.
DOI URL |
[17] | CHEN Y, LI Z, ZHU Y, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater., 2019, 31(8):e1806312. |
[18] |
TANG F, LEI H, WANG S, et al. A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale, 2017, 9(44):17364-17370.
DOI URL |
[19] |
DING S, NING K, YUAN B, et al. Durability of Fe-N/C catalysts with different nanostructures for electrochemical oxygen reduction in alkaline solution. Journal of Inorganic Materials, 2020, 35(8):953-961.
DOI URL |
[20] |
SEYAMA H, SOMA M. Fe2P spectra of silicate minerals. Journal of Electron Spectroscopy and Related Phenomena, 1987, 42(1):97-101.
DOI URL |
[21] |
MA L, ZHI C. Fe, N doped 2D porous carbon bifunctional catalyst for zinc-air battery. Journal of Inorganic Materials, 2019, 34(1):103-108.
DOI URL |
[22] |
FEI H, DONG J, FENG Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1(1):63-72.
DOI URL |
[23] |
CHEN Y, JI S, WANG Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angewandte Chemie International Edition, 2017, 56(24):6937-6941.
DOI URL |
[24] |
LI Q, WANG T, HAVAS D, et al. High-performance direct methanol fuel cells with precious-metal-free cathode. Advanced Science, 2016, 3(11):1600140.
DOI URL |
[1] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[2] | XU Zhou, LIU Yuxuan, CHI Junlin, ZHANG Tingting, WANG Shuyue, LI Wei, MA Chunhui, LUO Sha, LIU Shouxin. Horseshoe-shaped Hollow Porous Carbon: Synthesis by Hydrothermal Carbonization with Dual-template and Electrochemical Property [J]. Journal of Inorganic Materials, 2023, 38(8): 954-962. |
[3] | WANG Xinling, ZHOU Na, TIAN Yawen, ZHOU Mingran, HAN Jingru, SHEN Yuansheng, HU Zhiyi, LI Yu. SnS2/ZIF-8 Derived Two-dimensional Porous Nitrogen-doped Carbon Nanosheets for Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2023, 38(8): 938-946. |
[4] | WU Zhen, LI Huifang, ZHANG Zhonghan, ZHANG Zhen, LI Yang, LAN Jianghe, SU Liangbi, WU Anhua. Growth and Characterization of CeF3 Crystals for Magneto-optical Application [J]. Journal of Inorganic Materials, 2023, 38(3): 296-302. |
[5] | YANG Daihui, SUN Tian, TIAN Hexin, SHI Xiaofei, MA Dongwei. Iron-nitrogen-codoped Mesoporous Carbon: Facile Synthesis and Catalytic Performance of Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2023, 38(11): 1309-1315. |
[6] | WANG Lukai, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Direct-ink-writing 3D Printing of Ceramic-based Porous Structures: a Review [J]. Journal of Inorganic Materials, 2023, 38(10): 1133-1148. |
[7] | WU Songze, ZHOU Yang, LI Runfeng, LIU Xiaoqian, LI Cuiwei, HUANG Zhenying. Reaction Sintered Porous Ceramics Using Iron Tailings: Preparation and Properties [J]. Journal of Inorganic Materials, 2023, 38(10): 1193-1199. |
[8] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[9] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[10] | WANG Shiwei. Progress of Spontaneous Coagulation Casting of Ceramic Slurries Based on Hydrophobic Interaction [J]. Journal of Inorganic Materials, 2022, 37(8): 809-820. |
[11] | SUN Lian, GU Quanchao, YANG Yaping, WANG Honglei, YU Jinshan, ZHOU Xingui. Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Inorganic Materials, 2022, 37(7): 697-709. |
[12] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[13] | WU Xishi, ZHU Yunzhou, HUANG Qing, HUANG Zhengren. Effect of Pore Structure of Organic Resin-based Porous Carbon on Joining Properties of Cf/SiC Composites [J]. Journal of Inorganic Materials, 2022, 37(12): 1275-1280. |
[14] | CHEN Cheng, DING Jingxin, WANG Hui, WANG Deping. Nd-doped Mesoporous Borosilicate Bioactive Glass-ceramic Bone Cement [J]. Journal of Inorganic Materials, 2022, 37(11): 1245-1258. |
[15] | ZHANG Wenjun, ZHAO Xueying, LÜ Jiangwei, QU Youpeng. Progresses on Hollow Periodic Mesoporous Organosilicas: Preparation and Application in Tumor Therapy [J]. Journal of Inorganic Materials, 2022, 37(11): 1192-1202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||