Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 759-768.DOI: 10.15541/jim20190401
Special Issue: 生物材料论文精选(2020)
• REVIEW • Previous Articles Next Articles
ZHANG Xiaoxu1,2,ZHU Dongbin1,2,3(),LIANG Jinsheng1,2
Received:
2019-08-09
Revised:
2019-10-02
Published:
2020-07-20
Online:
2020-01-20
Supported by:
CLC Number:
ZHANG Xiaoxu,ZHU Dongbin,LIANG Jinsheng. Progress on Hydrothermal Stability of Dental Zirconia Ceramics[J]. Journal of Inorganic Materials, 2020, 35(7): 759-768.
Fig. 4 Ageing kinetics analysis with 3Y-TZP by μ-Raman spectroscopy[33] (a) m-ZrO2 content depth and corresponding optical images; (b)Transformed depth varies with ageing time
Equation | |
---|---|
Linear | ${{V}_{\text{m}}}=\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{k(I_{\text{t}}^{147}+\delta I_{\text{t}}^{265})+I_{\text{m}}^{181}+I_{\text{m}}^{190}}$ Clarke and Adar[ Katagiri, et al.[ Lim, et al.[ |
Power law[ | ${{V}_{\text{m}}}=\sqrt{0.19-\frac{0.13}{\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{m}}^{181}+I_{\text{m}}^{190}}-1.01}}-0.56$ |
Logarithmic[ | ${{V}_{\text{m}}}=0.65+0.39\lg \left( \frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{t}}^{265}+I_{\text{m}}^{181}+I_{\text{m}}^{190}} \right)$ |
Table 1 Proposed models for monoclinic phase quantification by Raman spectroscopy
Equation | |
---|---|
Linear | ${{V}_{\text{m}}}=\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{k(I_{\text{t}}^{147}+\delta I_{\text{t}}^{265})+I_{\text{m}}^{181}+I_{\text{m}}^{190}}$ Clarke and Adar[ Katagiri, et al.[ Lim, et al.[ |
Power law[ | ${{V}_{\text{m}}}=\sqrt{0.19-\frac{0.13}{\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{m}}^{181}+I_{\text{m}}^{190}}-1.01}}-0.56$ |
Logarithmic[ | ${{V}_{\text{m}}}=0.65+0.39\lg \left( \frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{t}}^{265}+I_{\text{m}}^{181}+I_{\text{m}}^{190}} \right)$ |
Fig. 8 Morphologies of samples treated with surface nitrogen after aging[60] (a) LSCM image of N-1600; (b) SEM image of N-1400; AFM images of N-1400 (c) surface and (d) bulk
[1] |
TURON-VINAS M, ANGLADA M. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 2018,34(3):365-375.
DOI URL PMID |
[2] | FERRARI M, VICHI A, ZARONE F. Zirconia abutments and restorations: from laboratory to clinical investigations. Dental Materials, 2015,31(3):63-76. |
[3] |
GAUTAM C, JOYNER J, GAUTAM A, et al. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 2016,45(48):19194-19215.
DOI URL PMID |
[4] |
GARVIE R C, HANNINK R H, PASCOE R T. Ceramic steel? Nature, 1975,258(5537):703-704.
DOI URL |
[5] |
DENRY I, KELLY J R. State of the art of zirconia for dental applications. Dental Materials, 2008,24(3):299-307.
DOI URL |
[6] |
TURON-VINAS M, ANGLADA M. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 2018,34(3):365-375.
DOI URL PMID |
[7] |
DENRY I, HOLLOWAY J. Ceramics for dental applications: a review. Materials, 2010,3(1):351-368.
DOI URL |
[8] |
NAKONIECZNY D S, ZIĘBOWICZ A, PASZENDA Z K, et al. Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications: a review. Biocybernetics and Biomedical Engineering, 2017,37(1):229-245.
DOI URL |
[9] |
LI R W K, CHOW T W, MATINLINNA J P. Ceramic dental biomaterials and CAD/CAM technology: state of the art. Journal of Prosthodontic Research, 2014,58(4):208-216.
DOI URL |
[10] | ZHU DONG-BIN, CHU RUI-QING, ZHANG XIAO-XU, et al. Progress in mechanism of ceramics inkjet printing. Journal of Mechanical Engineering, 2017,53(13):108-117. |
[11] |
SIVARAMAN K, CHOPRA A, NARAYAN A I, et al. Is zirconia a viable alternative to titanium for oral implant? a critical review. Journal of Prosthodontic Research, 2018,62(2):121-133.
DOI URL PMID |
[12] |
DURACCIO D, MUSSANO F, FAGA M G. Biomaterials for dental implants: current and future trends. Journal of Materials Science, 2015,50(14):4779-4812.
DOI URL |
[13] |
KOBAYASHI K, KUWAJIMA H, MASAKI T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics, 1981 3-4:489-493.
DOI URL |
[14] |
KOSMAČ T, KOCJAN A. Ageing of dental zirconia ceramics. Journal of the European Ceramic Society, 2012,32(11):2613-2622.
DOI URL |
[15] |
PEREIRA G K R, VENTURINI A B, SILVESTRI T, et al. Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2016,55:151-163.
DOI URL PMID |
[16] |
ÖZCAN M, VOLPATO C Â M, FREDEL M C. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Current Oral Health Reports, 2016,3(3):193-197.
DOI URL |
[17] |
WU Z K, LI N, YAN J Z, et al. Effect of hydrothermal aging on the phase mtability, microstructure and mechanical properties of dental 3Y-TZP ceramics. Applied Mechanics and Materials, 2014,529:251-255.
DOI URL |
[18] | LUGHI V, SERGO V. Low temperature degradation aging of zirconia: a critical review of the relevant aspects in dentistry. Denal Materials, 2010,26(8):807-820. |
[19] |
LANGE F F, DUNLOP G L, DAVIS B I. Degradation during aging of transformationt toughened ZrO2-Y2O3 materials at 250 ℃. Journal of the American Ceramic Society, 1986,69(3):237-240.
DOI URL |
[20] |
SATO T, SHIMADA M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. Journal of the American Ceramic Society, 1985,68(6):356-356.
DOI URL |
[21] |
YOSHIMURA M, NOMA T, KAWABATA K, et al. Role of H2O on the degradation process of Y-TZP. Journal of Materials Science Letters, 1987,6(4):465-467.
DOI URL |
[22] |
GUO X. Hydrothermal degradation mechanism of tetragonal zirconia. Journal of Materials Science, 2001,36(15):3737-3744.
DOI URL |
[23] |
GUO X, SCHOBER T. Water incorporation in tetragonal zirconia. Journal of the American Ceramic Society, 2004,87(4):746-748.
DOI URL |
[24] |
LANCE M J, VOGEL E M, REITH L A, et al. Low-temperature aging of zirconia ferrules for optical connectors. Journal of the American Ceramic Society, 2001,84(11):2731-2733.
DOI URL |
[25] |
HARAGUCHI K, SUGANO N, NISHII T, et al. Phase transformation of a zirconia ceramic head after total hip arthroplasty. The Journal of Bone and Joint Surgery British volume, 2001,83(7):996-1000.
DOI URL PMID |
[26] |
CHEVALIER J, GREMILLARD L, VIRKAR A V, et al. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. Journal of the American Ceramic Society, 2009,92(9):1901-1920.
DOI URL |
[27] |
CHEVALIER J, CALES B, DROUIN J M. Low-temperature aging of Y-TZP ceramics. Journal of the American Ceramic Society, 2004,82(8):2150-2154.
DOI URL |
[28] |
FABBRI P, PICONI C, BURRESI E, et al. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dental Materials, 2014,30(2):138-142.
DOI URL |
[29] |
CHEVALIER J. What future for zirconia as a biomaterial? Biomaterials, 2006,27(4):535-543.
DOI URL |
[30] |
CATTANI-LORENTE M, DURUAL S, AMEZ-DROZ M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging. Dental Materials, 2016,32(3):394-402.
DOI URL PMID |
[31] |
WEI C, GREMILLARD L. Towards the prediction of hydrothermal ageing of 3Y-TZP bioceramics from processing parameters. Acta Materialia, 2018,144:245-256.
DOI URL |
[32] |
ZHIGACHEV A O, UMRIKHIN A V, RODAEV V V. Theoretical description of zirconia ceramics aging kinetics. Journal of the Australian Ceramic Society, 2018,55(1):65-70.
DOI URL |
[33] |
ZHANG F, INOKOSHI M, VANMEENSEL K, et al. Lifetime estimation of zirconia ceramics by linear ageing kinetics. Acta Materialia, 2015,92:290-298.
DOI URL |
[34] |
GARVIE R C, NICHOLSON P S. Phase analysis in zirconia systems. Journal of the American Ceramic Society, 1972,55(6):303-305.
DOI URL |
[35] | TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society, 1984,67(6):119-121. |
[36] |
KOYAMA T, KUMAMOTO A, MATSUI K, et al. Revealing tetragonal-to-monoclinic phase transformation in Y-TZP at an initial stage of low temperature degradation using grazing incident-angle X-ray diffraction measurement. Journal of the Ceramic Society of Japan, 2018,126(9):728-731.
DOI URL |
[37] |
GREMILLARD L, GRANDJEAN S, CHEVALIER J. A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data. International Journal of Materials Research, 2010,101(1):88-94.
DOI URL |
[38] |
CLARKE D R, ADAR F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. Journal of the American Ceramic Society, 1982,65(6):284-288.
DOI URL |
[39] | KATAGIRI G, ISHIDA H, ISHITANI A, et al. Direct determination by Raman microprobe of the transformation zone size in Y2O3 containing tetragonal ZrO2 polycrystals. Advances in Ceramics, 1986,24A:537-544. |
[40] |
LIM C S, FINLAYSON T R, NINIO F, et al. In-situ measurement of the stress-induced phase transformations in magnesia-partially-stabilized zirconia using Raman spectroscopy. Journal of the American Ceramic Society, 1992,75(6):1570-1573.
DOI URL |
[41] |
KIM B K, HAHN J W, HAN K R. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. Journal of Materials Science Letters, 1997,16(8):669-671.
DOI URL |
[42] |
CASELLAS D, CUMBRERA F L, SáNCHEZ-BAJO F, et al. On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures. Journal of the European Ceramic Society, 2001,21(6):765-777.
DOI URL |
[43] |
LANGE F F. Transformation toughening. Journal of Materials Science, 1982,17(1):225-234.
DOI URL |
[44] |
CHEN S Y, LU H Y. Low-temperature ageing map for 3mol% Y2O3-ZrO2. Journal of Materials Science, 1989,24(2):453-456.
DOI URL |
[45] |
HALLMANN L, ULMER P, REUSSER E, et al. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. Journal of the European Ceramic Society, 2012,32(16):4091-4104.
DOI URL |
[46] |
PAUL A, VAIDHYANATHAN B, BINNER J G P. Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics. Journal of the American Ceramic Society, 2011,94(7):2146-2152.
DOI URL |
[47] |
SWAB J J. Low temperature degradation of Y-TZP materials. Journal of Materials Science, 1991,26(24):6706-6714.
DOI URL |
[48] |
LAWSON S, GILL C, DRANSFIELD G P. Hydrothermal and corrosive degradation of Y-TZP ceramics. Key Engineering Materials, 1995,113:207-214.
DOI URL |
[49] |
DEVILLE S, CHEVALIER J, FANTOZZI G, et al. Low temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. Journal of the European Ceramic Society, 2003,23(15):2975-2982.
DOI URL |
[50] |
SMIRNOV A, KURLAND H D, GRABOW J, et al. Microstructure, mechanical properties and low temperature degradation resistance of 2Y-TZP ceramic materials derived from nanopowders prepared by laser vaporization. Journal of the European Ceramic Society, 2015,35(9):2685-2691.
DOI URL |
[51] |
SUTHARSINI U, THANIHAICHELVAN M, TING C H, et al. Effect of two-step sintering on the hydrothermal ageing resistance of tetragonal zirconia polycrystals. Ceramics International, 2017,43(10):7594-7599.
DOI URL |
[52] |
PRESENDA A, SALVADOR M D, MORENO R, et al. Hydrothermal degradation behavior of Y-TZP ceramics sintered by nonconventional microwave technology. Journal of the American Ceramic Society, 2015,98(12):3680-3689.
DOI URL |
[53] |
CHINTAPALLI R, MESTRA A, MARRO F G, et al. stability of nanocrystalline spark plasma sintered 3Y-TZP. Materials, 2010,3(2):800-814.
DOI URL |
[54] |
WEI C, GREMILLARD L. Surface treatment methods for mitigation of hydrothermal ageing of zirconia. Journal of the European Ceramic Society, 2019,39(14):4322-4329.
DOI URL |
[55] |
DEVILLE S, CHEVALIER J, GREMILLARD L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials, 2006,27(10):2186-2192.
DOI URL PMID |
[56] |
INOKOSHI M, VANMEENSEL K, ZHANG F, et al. Aging resistance of surface-treated dental zirconia. Dental Materials, 2015,31(2):182-194.
DOI URL PMID |
[57] |
WEI C, GREMILLARD L. The influence of stresses on ageing kinetics of 3Y- and 4Y- stabilized zirconia. Journal of the European Ceramic Society, 2018,38(2):753-760.
DOI URL |
[58] | GILES J C. Préparation par reaction à l’état solide et structure des oxynitrures de zirconium. Bulletin de la Société Chimique de France, 1962,22:2118-2122. |
[59] |
CHUNG T J, SONG H S, KIM G H, et al. Microstructure and phase stability of yttria-doped tetragonal zirconia polycrystals heat treated in nitrogen atmosphere. Journal of the American Ceramic Society, 1997,80(10):2607-2612.
DOI URL |
[60] |
VALLE J, MESTRA A, MARRO F G, et al. Mechanical properties and resistance to low temperature degradation of surface nitrided 3Y-TZP. Journal of the European Ceramic Society, 2013,33(15/16):3145-3155.
DOI URL |
[61] |
HÜBSCH C, DELLINGER P, MAIER H J, et al. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating. Acta Biomaterialia, 2015,11(1):488-493.
DOI URL |
[62] |
SIVAKUMAR S, TEOW H L, SINGH R, et al. The effect of iron oxide on the mechanical and ageing properties of Y-TZP ceramic. Key Engineering Materials, 2016,701:225-229.
DOI URL |
[63] |
MAURYA R, GUPTA A, OMAR S, et al. Effect of sintering on mechanical properties of ceria reinforced yttria stabilized zirconia. Ceramics International, 2016,42(9):11393-11403.
DOI URL |
[64] |
KHAN M M, RAMESH S, BANG L T, et al. Effect of copper oxide and manganese oxide on properties and low temperature degradation of sintered Y-TZP ceramic. Journal of Materials Engineering and Performance, 2014,23(12):4328-4335.
DOI URL |
[65] |
PIVA D H, PIVA R H, ROCHA M C, et al. Resistance of InO1.5-stabilized tetragonal zirconia polycrystals to low-temperature degradation. Materials Letters, 2016,163:226-230.
DOI URL |
[66] |
LEE H B, PRINZF B, CAI W. Atomistic simulations of grain boundary segregation in nanocrystalline yttria stabilized zirconia and gadolinia doped ceria solid oxide electrolytes. Acta Materialia, 2013,61(10):3872-3887.
DOI URL |
[67] |
YOKOI T, YOSHIYA M, YASUDA H. On modeling of grain boundary segregation in aliovalent cation doped ZrO2: critical factors in site-selective point defect occupancy. Scripta Materialia, 2015,102:91-94.
DOI URL |
[68] |
ZHANG F, BATUK M, HADERMANN J, et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: grain boundary segregation and oxygen vacancy annihilation. Acta Materialia, 2016,106:48-58.
DOI URL |
[69] |
ZHANG F, VANMEENSEL K, INOKOSHI M, et al. Critical influence of alumina content on the low temperature degradation of (2-3)mol% yttria-stabilized TZP for dental restorations. Journal of the European Ceramic Society, 2015,35(2):741-750.
DOI URL |
[70] |
JING Q, BAO J, RUAN F, et al. High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications. Ceramics International, 2019,45(5):6066-6073.
DOI URL |
[71] |
ZHANG F, VANMEENSEL K, BATUK M, et al. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomaterials, 2015,16:215-222.
DOI URL |
[72] |
NAKAMURA T, NAKANO Y, USAMI H, et al. Translucency and low-temperature degradation of silica-doped zirconia: a pilot study. Dental Materials Journal, 2016,35(4):571-577.
DOI URL PMID |
[73] |
GREMILLARD L, EPICIER T, CHEVALIER J, et al. Microstructural study of silica-doped zirconia ceramics. Acta Materialia, 2000,48(18/19):4647-4652.
DOI URL |
[74] |
SAMODUROVA A, KOCJAN A, SWAIN M V, et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomaterials, 2015,11:477-487.
DOI URL |
[75] |
MOHAMED E, TAHERI M, MEHRJOO M, et al. In vitro biocompatibility and ageing of 3Y-TZP/CNTs composites. Ceramics International, 2015,41(10):12773-12781.
DOI URL |
[76] |
MORALES-RODRIGUEZ A, POYATO R, GUTIERREZ-MORA F, et al. The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals. Ceramics International, 2018,44(15):17716-17723.
DOI URL |
[77] |
SONG YAN-JUN, ZHU DONG-BIN, LIANG JIN-SHENG, et al. Enhanced mechanical properties of 3mol% Y2O3 stabilized tetragonal ZrO2, incorporating tourmaline particles. Ceramics International, 2018,44(13):15550-15556.
DOI URL |
[78] |
ZHU DONG-BIN, SONG YAN-JUN, LIANG JIN-SHNEG, et al. Progress of toughness in dental zirconia ceramics. Journal of Inorganic Materials, 2018,33(4):363-372.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||