Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 633-646.DOI: 10.15541/jim20190308
Special Issue: 封面文章; 功能陶瓷论文精选(二)
Previous Articles Next Articles
YU Ying1,DU Hongliang1,2(),YANG Zetian1,JIN Li2,QU Shaobo1
Received:
2019-06-25
Revised:
2019-09-03
Published:
2020-06-20
Online:
2019-12-04
Supported by:
CLC Number:
YU Ying, DU Hongliang, YANG Zetian, JIN Li, QU Shaobo. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges[J]. Journal of Inorganic Materials, 2020, 35(6): 633-646.
Fig. 1 The influence of changing electric field to polarization states of a ferroelectric (a), publication numbers on Web of Science database from 2000 to 2018 (b) and structure of the review (c) Theme searching of (b): “electrocaloric effect”, “electrocaloric effect” and “bulk ceramic”, “electrocaloric effect” and “thin film”, “electrocaloric effect” and “polymer”, “electrocaloric effect”, and “thick film”
Fig. 3 A solid-state EC cooling device and working mechanism of P(VDF-TrFE-CFE) cooling device to move heat from heat source to heat sink by electrostatic actuation[59]
Fig. 5 Schematic diagram of composition design for achieving a large ?T near room temperature and a wide using range FE: ferroelectric; AE: antiferroelectric; PE: paraelectric
Fig. 8 The EC properties of BT, BNT and KNN based lead-free bulk ceramics[50-52,63-65,67,74, 89-98,101,107,108,110-118,121-126] (a) ΔT and temperature; (b) ΔT and electric field; (c) ΔT/ΔE and temperature; (d) ΔT/ΔE and electric field
[1] |
SHI J Y, HAN D L, LI Z C , et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019,3:1-26.
DOI URL |
[2] | SUCHANECK G, GERLACH G . Lead-free relaxor ferroelectrics for electrocaloric cooling. Materials Today: Proceedings, 2016,3(2):622-631. |
[3] | CORREIA T, ZHANG Q . Electrocaloric Materials: New Generation of Coolers. Berlin: Spinger, 2014: 1-3. |
[4] |
DU G, LIANG R H, LI T , et al. Recent progress on defect dipoles characteristics in piezoelectric materials. Journal of Inorganic Materials, 2013,28(2):123-130.
DOI URL |
[5] |
MISCHENKO A S, ZHANG Q, SCOTT J F , et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006,311(5765):1270-1271.
DOI URL |
[6] |
ZHANG G Z, ZHANG X S, YANG T N , et al. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano, 2015,9(7):7164-7174.
DOI URL |
[7] | ZHANG G Z, LI Q, GU H M , et al. Ferroelectric polymer nanocomposites for room temperature electrocaloric refrigeration. Adv. Mater., 2015,27(8):1450-1454. |
[8] |
WANG D, CHEN X, YUAN G L , et al. Toward artificial intelligent self-cooling electronic skins: large electrocaloric effect in all-inorganic flexible thin films at room temperature. J. Materiomics, 2019,5(1):66-72.
DOI URL |
[9] |
DARBANIYAN F, DAYAL K, LIU L P , et al. Designing soft pyroelectric and electrocaloric materials using electrets. Soft Matter., 2019,15(2):262-277.
DOI URL |
[10] |
LI Q, ZHANG G Z, ZHAN X S , et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv. Mater., 2015,27(13):2236-2241.
DOI URL |
[11] | KLEIN L, APARICIO M, JITIANU A . Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. 2nd ed. Springer: Switzerland, 2018: 667-693. |
[12] | BAI Y, WEI D, QIAO L J. Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3-PbTiO3 by phase composition and crystal orientation. Appl. Phys. Lett., 2015, 107(19): 192904-1-4. |
[13] | YE H J, QIAN X S, JEONG D Y , et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl. Phys. Lett., 2014, 105(15): 152908-1-4. |
[14] | LI F, CHEN G R, LIU X , et al. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3- 0.06BaTiO3 ceramics. Appl. Phys. Lett., 2017, 110(18): 182904-1-5. |
[15] |
VALANT M, AXELSSON A K, LE GOUPIL F , et al. Electrocaloric temperature change constrained by the dielectric strength. Mater. Chem. Phys., 2012,136(2/3):277-280.
DOI URL |
[16] |
NEESE B, CHU B J, LU S G , et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008,321(5890):821-823.
DOI URL |
[17] | ZHANG G Z, WENG L X, HU Z Y , et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density. Adv. Mater., 2019, 31(8): 1806642-1-8. |
[18] | ZHUO F P, LI Q, GAO J H, et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb, La)(Zr, Sn, Ti)O3 single crystal. Appl. Phys. Lett., 2016, 108(8): 082904-1-5. |
[19] | KUTNJAK Z ROŽIČ B, PIRC R , Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley& Sons)., 2015: 1-19. |
[20] | LIU Y, SCOTT J F, DKHIL B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl. Phys. Rev., 2016, 3(3): 031102-1-18. |
[21] |
LI X Y, LU S G, CHEN X Z , et al. Pyroelectric and electrocaloric materials. J. Mater. Chem. C, 2013,1:23-37.
DOI URL |
[22] |
VALANT M . Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater Sci., 2012,57(6):980-1009.
DOI URL |
[23] | LIU Y, SCOTT J F, DKHIL B. Some strategies for improving caloric responses with ferroelectrics. APL Mater., 2016, 4(6): 064109-1-9. |
[24] |
SINYAVSKY Y V, BRODYANSKY V M . Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics, 1992,131(1):321-325.
DOI URL |
[25] |
CAZORLA C . In the search of new electrocaloric materials: fast ion conductors. Results Phys., 2015,5:262-263.
DOI URL |
[26] |
SCOTT J F . Electrocaloric materials. Annu. Rev. Mater. Res., 2011,41:229-240.
DOI URL |
[27] |
FÄHLER S, RÖßLER U K, KASTNER O , et al. Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater., 2012,14(1/2):10-19.
DOI URL |
[28] |
MANOSA L, PLANES A, ACET M . Advanced materials for solid-state refrigeration. J. Mater. Chem. A, 2013,1(16):4925-4936.
DOI URL |
[29] |
LU S G, TANG X G, WU S H , et al. Large electrocaloric effect in ferroelectric materials. Journal of Inorganic Materials, 2014,29(1):6-12.
DOI URL |
[30] |
ALPAY S P, MANTESE J, TROLIER-MCKINSTRY S , et al. Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull., 2014,39(12):1099-1111.
DOI URL |
[31] |
MOYA X, KAR-NARAYAN S, MATHUR N D . Caloric materials near ferroic phase transitions. Nat. Mater., 2014,13:439-450.
DOI URL |
[32] | BAI Y, LI J T, QIN S Q , et al. Ferroelectric ceramics for high-efficient solid-state refrigeration. Advanced Ceramics, 2018,39(6):369-389. |
[33] | THOMSON W, KELVIN L. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. Phil. Mag., 1878,5(28):4-27. |
[34] | KOBEKO P, KURTSCHATOV J . Dielektrische eigenschaften der seignettesalzkristalle. Z. Phys., 1930,66(3/4):192-205. |
[35] | HAUTZENLAUB J F . Electrocaloric and Dielectric Behavior of Potassium Dihydrogen Phosphate. Massachusetts: Massachusetts Institute of Technology Doctoral Dissertation, 1943. |
[36] |
RADEBAUGH R, LAWLESS W N, SIEGWARTH J D , et al. Feasibility of electrocaloric refrigeration for the 4-15 K temperature range. Cryogenics, 1979,19(4):187-208.
DOI URL |
[37] |
KIMURA T, NEWNHAM R E, CROSS L E . Shape-memory effect in PLZT ferroelectric ceramics. Phase Transit., 1981,2(2):113-130.
DOI URL |
[38] |
BIRKS E, SHEBANOV L, STERNBERG A . Electrocaloric effect in PLZT ceramics. Ferroelectrics, 1986,69(1):125-129.
DOI URL |
[39] |
LAWLESS W N . Specific heat and electrocaloric properties of KTaO3 at low temperatures. Phys. Rev. B, 1977,16(1):433-439.
DOI URL |
[40] |
SINYAVSKY Y V, PASHKOV N D, GOROVOY Y M , et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics, 1989,90(1):213-217.
DOI URL |
[41] |
XIAO D Q, YANG B, PENG S Q , et al. Analyses and syntheses of ferroelectric refrigeration ceramics. Ferroelectrics, 1997,195(1):93-96.
DOI URL |
[42] |
ZHAO Y, HAO X H, ZHANG Q . A giant electrocaloric effect of Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature near room temperature. J. Mater. Chem. C, 2015,3:1694-1699.
DOI URL |
[43] |
ROŽIČ B, MALIČ B, URŠIČ H , et al. Direct measurements of the electrocaloric effect in bulk PbMg1/3Nb2/3O3 (PMN) ceramics. Ferroelectrics, 2011,421(1):103-107.
DOI URL |
[44] |
HAN L Y, GUO S B, YAN S G , et al. Electrocaloric effect in Pb0.3CaxSr0.7-xTiO3 ceramics near room temperature. Journal of Inorganic Materials, 2019,34(9):1011-1014.
DOI URL |
[45] | PERÄNTIE J, TAILOR H N, HAGBERG J , et al. Electrocaloric properties in relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 system. J. Appl. Phys., 2013, 114(17): 174105-1-6. |
[46] | GENG W P, LIU Y, MENG X J. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Adv. Mater., 2015, 27(20): 3164-1-5. |
[47] | BAI Y, ZHENG G P, DING K , et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. J. Appl. Phys., 2011, 110(9): 094103-1-3. |
[48] |
JIANG X J, LUO L H, WANG B Y , et al. Electrocaloric effect based on the depolarization transition in (1-x)Bi0.5Na0.5TiO3-xKNbO3 lead-free ceramics. Ceram. Int., 2014,40(2):2627-2634.
DOI URL |
[49] |
KUMAR S, SINGH S . Study of electrocaloric effect in lead-free 0.9K0.5Na0.5NbO3-0.1CaZrO3 solid solution ceramics. J. Mater. Sci.: Mater. Electron., 2019,30(14):12924-12928.
DOI URL |
[50] |
NOVAK N, PIRC R, KUTNJAK Z . Effect of electric field on ferroelectric phase transition in BaTiO3 ferroelectric. Ferroelectrics, 2014,469(1):61-66.
DOI URL |
[51] |
QIAN X S, YE H J, ZHANG Y T , et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater., 2014,24(9):1300-1305.
DOI URL |
[52] | BAI Y, HAN X, ZHENG X C , et al. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics. Sci. Rep., 2013, 3: 2895-1-5. |
[53] |
BAI Y, ZHENG G P, SHI S Q . Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull., 2011,46(11):1866-1869.
DOI URL |
[54] | PLAZNIK U, KITANOVSKI A, ROŽIČ B , et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett., 2015, 106(4): 043903-1-4. |
[55] | CHUKKA R, VANDRANGI S, SHANNIGRAHI S , et al. An electrocaloric device demonstrator for solid-state cooling. EPL-Europhys. Lett., 2013, 103: 47011-1-4. |
[56] | ZHANG T, QIAN X S, GU H M , et al. An electrocaloric refrigerator with direct solid to solid regeneration. Appl. Phys. Lett., 2017, 110(24): 243503-1-4. |
[57] |
BLUMENTHAL P, RAATZ A . Design methodology for electrocaloric cooling systems. Energy Technol., 2018,6(8):1560-1566.
DOI URL |
[58] |
MOYA X, DEFAY E, MATHUR N D , et al. Electrocaloric effects in multilayer capacitors for cooling applications. MRS Bulletin, 2018,43(4):291-294.
DOI URL |
[59] |
MA R J, ZHANG Z Y, TONG K , et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017,357(6356):1130-1134.
DOI URL |
[60] | Li X Y . Electrocaloric Effect in Relaxor Ferroelectric Materials. Pennsylvania: The Pennsylvania State University Doctoral Dissertation, 2013. |
[61] |
ROŽIČ B, MALIČ B, URŠIČ H , et al. Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics, 2010,405(1):26-31.
DOI URL |
[62] | SANLIALP M, MOLIN C, SHVARTSMAN V V , et al. Modified differential scanning calorimeter for direct electrocaloric measurements. IEEE Trans. Ultrason. Ferroelectrics, 2016,63(10):1690-1696. |
[63] |
QI S, ZHANG G H, DUAN L H , et al. Electrocaloric effect in Pb-free Sr-doped BaTi0.9Sn0.1O3 ceramics. Mater. Res. Bull., 2017,91:31-35.
DOI URL |
[64] | LI J T, BAI Y, QIN S Q , Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics. Appl. Phys. Lett., 2016, 109(16): 162902-1-4. |
[65] | ZHOU Y Z, LIN Q R, LIU W F , et al. Compositional dependence of electrocaloric effect in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. RCS Adv., 2016,6(17):14084-14089. |
[66] | ROSE M C, COHEN R E. Giant electrocaloric effect around TC. Phys. Rev. Lett., 2012, 109(18): 187604-1-5. |
[67] |
ZHAO L, KE X Q, ZHOU Z J , et al. Large electrocaloric effect over a wide temperature range in BaTiO3-modified lead-free ceramics. J. Mater. Chem. C, 2019,7:1353-1358.
DOI URL |
[68] | NIE X, YAN S G, CHEN X F, et al. Correlation between electrocaloric response and polarization behavior: slim-like and square-like hysteresis loop. Phys. Status Solidi A, 2018, 215(13): 1700971-1-7. |
[69] | 张良莹, 姚熹 . 电介质物理. 西安: 西安交通大学, 2008: 432-480. |
[70] | 王国梅, 万发荣 . 材料物理. 武汉:武汉理工大学出版社, 2004: 179-192. |
[71] | 殷之文 . 电介质物理学. 北京: 科学出版社, 2003: 473-483. |
[72] | 钟维烈 . 铁电体物理学. 北京: 科学出版社, 2018: 68-148. |
[73] | KARAKI T, KATAYAMA T, YOSHIDA K , et al. Morphotropic phase boundary slope of (K, Na, Li)NbO3-BaZrO3 binary system adjusted using third component (Bi, Na)TiO3 additive. Jpn. J. Appl. Phys., 2013, 52(9S1): 09KD11-1-4. |
[74] |
SASAKI A, CHIBA T, MAMIYA Y , et al. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys., 1999,38(9):5564-5567.
DOI URL |
[75] | CHUKKA R, CHEAH J W, CHEN Z H , et al. Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries. Appl. Phys. Lett., 2011, 98(24): 242902-1-3. |
[76] | ZHANG T D, LI W L, CAO W P , et al. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering. Appl. Phys. Lett., 2016, 108(216): 162902-1-5. |
[77] |
YAO F Z, YU Q, WANG K , et al. Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K, Na, Li)(Nb, Ta, Sb)O3 lead-free piezoceramics. RSC Adv., 2014,4:20062-20068.
DOI URL |
[78] | GOTTSCHALL T, BENKE D, FRIES M , et al. A matter of size and stress: understanding the first-order transition in materials for solid-state refrigeration. Adv. Funct. Mater., 2017, 27(32): 1606735-1-6. |
[79] |
WANG D W, HUSSAIN F, KHESRO A , et al. Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc., 2017,100:627-637.
DOI URL |
[80] |
SRIKANTH K S, SINGH V P, VAISH R . Enhanced pyroelectric figure of merits of porous BaSn0.05Ti0.95O3 ceramics. J. Eur. Ceram. Soc., 2017,37(13):3943-3950.
DOI URL |
[81] | KIM H K, SHI F G . Thickness dependent dielectric strength of a low-permittivity dielectric film. IEEE Trans. Electr. In., 2001,8(2):248-252. |
[82] | CHEN G, ZHAO J W, LI S T , et al. Origin of thickness dependent dc electrical breakdown in dielectrics. Appl. Phys. Lett., 2012, 100(22): 222904-1-4. |
[83] |
LIU X Q, CHEN T T, FU M S , et al. Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: effects of domain sizes and phase constitution. Ceram. Int., 2014,40(7):11269-11276.
DOI URL |
[84] | 内野研二 . 铁电器件, 2版. 西安: 西安交通大学出版社, 2017: 15-17. |
[85] | MARATHE M, GRÜNEBOHM A, NISHIMATSU T , et al. First-principles-based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods. Phys. Rev. B, 2016, 93: 054110-1-10. |
[86] | NOVAK N, PIRC R, KUTNJAK Z. Impact of critical point on piezoelectric and electrocaloric response in barium titanate. Phys. Rev. B, 2013, 87: 104102-1-5. |
[87] | NISHIMATSU T, BARR J A, BECKMAN S P. Direct molecular dynamics simulation of electrocaloric effect BaTiO3. J. Phys. Soc. Jpn., 2013, 82(11): 114605-1-5. |
[88] |
HAN F, BAI Y, QIAO L J , et al. A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics. J. Mater. Chem. C, 2016,4(9):1842-1849.
DOI URL |
[89] |
BAI Y, HAN F, XIE S , et al. Thickness dependence of electrocaloric effect in high-temperature sintered Ba0.8Sr0.2TiO3 ceramics. J. Alloys Compd., 2018,736:57-61.
DOI URL |
[90] |
YU Z, ANG C, GUO R , et al. Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics. J. Appl. Phys., 2002,92(3):1489-1493.
DOI URL |
[91] | YAO Y G, ZHOU C, LYU D C , et al. Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting. Europhysics Letters, 2012, 98(2): 27008-1-6. |
[92] |
WEYLAND F, EISELE T, STEINER S , et al. Long term stability of electrocaloric response in barium zirconate titanate. J. Eur. Ceram. Soc., 2017,38(2):551-556.
DOI URL |
[93] | ZHANG X, WU L, GAO S , et al. Large electrocaloric effect in Ba(Ti1-xSnx)O3 ceramics over a broad temperature region. AIP Adv., 2015, 5: 047134-1-7. |
[94] | SANLIALP M, LUO Z D, SHVARTSMAN V V , et al. Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1-x)O3 ceramics. Appl. Phys. Lett., 2017, 111(17): 173903-1-5. |
[95] | HIROSHI M. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr, Ti)O3 and (Ba, Sr)TiO3 ceramics. Jpn. J. Appl. Phys., 2017, 56: 10PC05-1-8. |
[96] |
JIAN X D, LU B, LI D D , et al. Direct measurement of large electrocaloric effect in Ba(ZrxTi1-x)O3 ceramics. ACS Appl. Mater. Interfaces, 2018,10(5):4801-4807.
DOI URL |
[97] | LUO Z D, ZHANG D W, YANG L , et al. Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature. Appl. Phys. Lett., 2014, 105(10): 102904-1-5. |
[98] | LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett., 2009, 103(25): 257602-1-4. |
[99] |
XU Z P, QIANG H, CHEN Y , et al. Room-temperature electrocaloric effect in (1-x)Ba0.67Sr0.33TiO3-xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics under moderate electric field. J. Mater. Sci.: Mater. Electron., 2018,29(9):7227-7232.
DOI URL |
[100] | TSAI C C, CHAO W H, CHU S Y, et al. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature. AIP Advances, 2016, 6(12): 125024-1-16. |
[101] |
NIE X, YAN S, GUO S , et al. The influence of phase transition on electrocaloric effect in lead-free (Ba0.9Ca0.1)(Ti1-xZrx)O3 ceramics. J. Am. Ceram. Soc., 2017,100(11):5202-5210.
DOI URL |
[102] |
PATEL S, VAISH R . Effect of sintering temperature and dwell time on electrocaloric properties of Ba0.85Ca0.075Sr0.075Ti0.90Zr0.10O3 ceramics. Phase Transit., 2017,90(5):465-474.
DOI URL |
[103] |
HAO J G, XU Z J, CHU R Q , et al. Fatigue-resistant, temperature- insensitive strain behavior and strong red photoluminescence in Pr-modified 0.92(Bi0.5Na0.5)TiO3-0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 lead-free ceramics. J. Eur. Ceram. Soc., 2017,37(2):877-882.
DOI URL |
[104] |
FAN Z M, LIU X M, TAN X L . Large electrocaloric responses in [Bi1/2(Na, K)1/2]TiO3-based ceramics with giant electrostrains. J. Am. Ceram. Soc., 2017,100(5):2088-2097.
DOI URL |
[105] |
RIEMER L M, LALITHA K V, JIANG X J , et al. Stress-induced phase transition in lead-free relaxor ferroelectric composites. Acta Mater., 2017,136:271-280.
DOI URL |
[106] |
CHAUHAN A, PATEL S, VAISH R . Enhanced electrocaloric effect in pre-stressed ferroelectric materials. Energy Technol., 2015,3(2):177-186.
DOI URL |
[107] |
CAO W P, LI W L, XU D , et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram. Int., 2014,40(7):9273-9278.
DOI URL |
[108] |
CAO W P, LI W L, DAI X F , et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc., 2016,36(3):593-600.
DOI URL |
[109] | PONOMAREVA I, LISENKOV S. Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys. Rev. Lett., 2012, 108(16): 167604-1-5. |
[110] |
ZANNEN M, LAHMAR A, KUTNJAK Z , et al. Electrocaloric effect and energy storage in lead free Gd0.02Na0.5Bi0.48TiO3 ceramic. Solid State Sci., 2017,66:31-37.
DOI URL |
[111] |
LUO L H, JIANG X J, ZHANG Y Y , et al. Electrocaloric effect and pyroelectric energy harvesting of (0.94-x)Na0.5Bi0.5TiO3- 0.06BaTiO3-xSrTiO3 ceramics. J. Eur. Ceram. Soc., 2017,37(8):2803-2812.
DOI URL |
[112] | LE GOUPIL F, BENNETT J, AXELSSON A K , et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl. Phys. Lett., 2015, 107(17): 172903-1-4. |
[113] | LE GOUPIL F, ALFORD N M. Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics. APL Mater., 2016, 4(6): 064104-1-6. |
[114] | LE GOUPIL F, MCKINNON R, KOVAL V , et al. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Sci. Rep., 2016, 6: 28251-1-6. |
[115] |
WEYLAND F, ACOSTA M, KORUZA J , et al. Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv. Funct. Mater., 2016,26(40):7326-7333.
DOI URL |
[116] |
LI F, CHEN G R, LIU X , et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3- BaTiO3-(Sr0.7Bi0.2□0.1)TiO3 ceramics. J. Eur. Ceram. Soc., 2017,37(15):4732-4740.
DOI URL |
[117] |
LI J L, ZHAO X B, XU Z , et al. Electrocaloric effect in lead-free relaxor (1-x)(Sr0.7Bi0.2)TiO3+x(Na0.5Bi0.5)TiO3 material system. Mater. Lett., 2017,187:68-71.
DOI URL |
[118] |
LI Q, WANG J, MA L T , et al. Large electrocaloric effect in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics by La2O3 addition. Mater. Res. Bull., 2016,74:57-61.
DOI URL |
[119] |
TUNKASIRI T, RUJIJANAGUL G . Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett., 1996,15(20):1767-1769.
DOI URL |
[120] |
DU H L, YANG Z T, GAO F , et al. Lead-free nonlinear dielectric ceramics for energy storage application: current status and challenges. Journal of Inorganic Materials, 2018,33(10):1046-1058.
DOI URL |
[121] |
ROŽIČ B, KORUZA J, KUTNJAK Z , et al. The electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Ferroelectrics, 2013,446(1):39-45.
DOI URL |
[122] | KORUZA J, ROŽIČ B, CORDOYIANNIS G , et al. Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Appl. Phys. Lett., 2015, 106(20): 202905-1-4. |
[123] |
GUPTA A, KUMAR R, SINGH S . Coexistence of negative and positive electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3-0.1SrTiO3 nanocrystalline ceramics. Scripta Mater., 2018,143:5-9.
DOI URL |
[124] |
KUMAR R, SINGH S . Enhanced electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3-0.1Sr(Sc0.5Nb0.5)O3 ferroelectric nanocrystalline ceramics. Alloys Compd., 2017,723:589-594.
DOI URL |
[125] | WANG X J, WU J G, DKHIL B , et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys. Lett., 2017, 110(6): 063904-1-5. |
[126] | KUMAR R, SINGH S . Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1-x)-(LiSbO3)x nanocrystalline ceramics. Sci. Rep., 2018, 8(1): : 3186-1-9. |
[127] |
LI F, LU B, ZHAI J W , et al. Enhanced piezoelectric properties and electrocaloric effect in novel lead-free (Bi0.5K0.5)TiO3-La(Mg0.5Ti0.5)O3 ceramics. J. Am. Ceram. Soc., 2018,101(12):5503-5513.
DOI URL |
[128] | TAO H, YANG J L, LYU X , et al. Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics. J. Am. Ceram. Soc., 2019,102(5):2578-2586. |
[129] |
YU Y, GAO F, WEYLAND F , et al. Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics. J. Mater. Chem. A, 2019,7(19):11665-11672.
DOI URL |
[130] |
AXELSSON A K, LE GOUPIL F, VALANT M , et al. Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics. Acta Mater., 2017,124:120-126.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||