Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 623-632.DOI: 10.15541/jim20190342
Special Issue: 2020年能源材料论文精选(三) :太阳能电池、热电材料及其他; 【虚拟专辑】太阳能电池(2020~2021)
YU Shouwu1,ZHAO Zewen1,2,ZHAO Jinjin2,XIAO Shujuan1,SHI Yan3,GAO Cunfa3,SU Xiao2,HU Yuxiang4,ZHAO Zhisheng5,WANG Jie2,WANG Lianzhou4()
Received:
2019-07-10
Revised:
2019-09-01
Published:
2020-06-20
Online:
2019-09-18
Supported by:
CLC Number:
YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells[J]. Journal of Inorganic Materials, 2020, 35(6): 623-632.
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
PEDOT:PSS/n-Si/Ti/PE/(PVA/H3PO4)/PE/Ti | 10.50 | 13.39 | 78.42 | [29] | |
SiSC-SPC | Glass/c-Si/Insulation layer/Graphene oxides/ Electrolyte/Substrate | 9.72 | 15.69 | 62.00 | [30] |
PEDOT:PSS/Si/Au/Graphene/Separator/Graphene/PET | 2.92 | 12.37 | 23.61 | [19] | |
SiSC-LIB | c-Si/Al/SiO2/Al/Li4Ti5O12/Soild electrolyte/LiCoO2/ Al/Li4Ti5O12/Solid electrolyte/LiCoO2/Al | 7.61 | 15.80 | 48.16 | [31] |
Table 1 Performance parameters of in-situ integrative SiSC-storage tandem cells
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
PEDOT:PSS/n-Si/Ti/PE/(PVA/H3PO4)/PE/Ti | 10.50 | 13.39 | 78.42 | [29] | |
SiSC-SPC | Glass/c-Si/Insulation layer/Graphene oxides/ Electrolyte/Substrate | 9.72 | 15.69 | 62.00 | [30] |
PEDOT:PSS/Si/Au/Graphene/Separator/Graphene/PET | 2.92 | 12.37 | 23.61 | [19] | |
SiSC-LIB | c-Si/Al/SiO2/Al/Li4Ti5O12/Soild electrolyte/LiCoO2/ Al/Li4Ti5O12/Solid electrolyte/LiCoO2/Al | 7.61 | 15.80 | 48.16 | [31] |
Fig. 3 (a) Photograph[46] and (b-f) schematic diagrams[11,39,46] of in-situ integrated DSSC-storagetandem cells, and (g-h) schematic diagrams of in-situ integrated QDSSC-storage tandem cells[48]
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
DSSC-SPC | FTO/TiO2@dye/LiI/Carbon layer/Porous separator/C/Pt | - | - | 59.00 | [12] |
FTO/TiO2@N719/I-/I3-/Pt/Carbon/Separator/Electrolyte/C/Pt | - | - | 42.00 | [37] | |
TCO/TiO2@N719/I-/I3- gel/MWCNT /PVA-H3PO4/MWCNT | 5.12 | 6.10 | 84.00 | [39] | |
FTO/TiO2@N719/ I-/I3- /Zn NWs@PVDF @Au@Pt/FTO | 3.70 | - | - | [40] | |
Glass/FTO/TiO2@dye/ I-/I3-/Si/Ionic polymer/Si wafer | 2.10 | 2.63 | 80.00 | [41] | |
FTO/TiO2-D365dye/P3HT/Ag/RuOx(OH)y/Nafion membrane/ RuOx(OH)y/FTO | 0.80 | 0.91 | 88.00 | [42] | |
Ti/TiO2@N719/ I-/I3-/Pt/Parafilm/C/PVDF/ SS | 1.46 | 2.03 | 71.56 | [43] | |
CNT fiber@CNTs/ Ti wire/TiO2@N719/I-/I3-/CNT fiber | 1.50 | 6.10 | 84.00 | [44] | |
Ti wire/TiO2@N719/Eutectic melts/CNTs-Ti wire/ TiO2 /PVA-H3PO4/CNT | 2.07 | 2.73 | 75.70 | [45] | |
Ti/TiO2@N719/I-/I3-/MWCNT/Separator/MWCNT/PVA-H3PO4/MWCNT | 1.83 | 6.47 | 28.30 | [11] | |
Ti Fiber@TiO2@dye/ I-/I3-/Stainless steel(ss)@PANi-SS@Space wire/H2SO4/ss@PANi | 2.12 | 4.56 | 46.00 | [18] | |
Ti/TiO2@N719/I-/I3-/Carbon fiber(CF)/EVA/Cu-CF@RuO2?xH2O/H3PO4/PVA/CF@RuO2?xH2O/EVA/Cu/PDMS | - | 5.64 | - | [46] | |
QDSSC-SPC | Glass/FTO/TiO2@CdS/CdSe/S2-/S/Cfiber@Cu2S/C/Electrolyte/C | 1.8 | [48] | ||
DSSC-LIB | Pt/Electrolyte/TNTs@N719/Ti/TNTs/Membrane/LiCoO2/Al | 0.82 | - | - | [49] |
PEN/ITO/TiO2@N719/I-/I3-/Pt/PEDOT/LiClO4/PEDOT/Pt | - | 4.37 | - | [50] | |
FTO/TiO2@N3/I-/I3-/Pt/PProDOT-Et2/LiClO4/PProDOT-Et2/Pt | 0.60 | 0.75 | 80.00 | [51] | |
FTO/Pt/ I-/I3-/TiO2 nanotube (ATO)@N749/Ti/ ATO/Separator/Li2SO4/ATO/Ti/FTO | 1.64 | 3.18 | 51.60 | [52] | |
FTO/TiO2@bis-EDOT dye/PEDOT/C/LiClO4/electrolyte/ppy/FTO | 0.10 | - | - | [53] |
Table 2 Performance comparison of in-situ integrative SSC-storage tandem cells
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
DSSC-SPC | FTO/TiO2@dye/LiI/Carbon layer/Porous separator/C/Pt | - | - | 59.00 | [12] |
FTO/TiO2@N719/I-/I3-/Pt/Carbon/Separator/Electrolyte/C/Pt | - | - | 42.00 | [37] | |
TCO/TiO2@N719/I-/I3- gel/MWCNT /PVA-H3PO4/MWCNT | 5.12 | 6.10 | 84.00 | [39] | |
FTO/TiO2@N719/ I-/I3- /Zn NWs@PVDF @Au@Pt/FTO | 3.70 | - | - | [40] | |
Glass/FTO/TiO2@dye/ I-/I3-/Si/Ionic polymer/Si wafer | 2.10 | 2.63 | 80.00 | [41] | |
FTO/TiO2-D365dye/P3HT/Ag/RuOx(OH)y/Nafion membrane/ RuOx(OH)y/FTO | 0.80 | 0.91 | 88.00 | [42] | |
Ti/TiO2@N719/ I-/I3-/Pt/Parafilm/C/PVDF/ SS | 1.46 | 2.03 | 71.56 | [43] | |
CNT fiber@CNTs/ Ti wire/TiO2@N719/I-/I3-/CNT fiber | 1.50 | 6.10 | 84.00 | [44] | |
Ti wire/TiO2@N719/Eutectic melts/CNTs-Ti wire/ TiO2 /PVA-H3PO4/CNT | 2.07 | 2.73 | 75.70 | [45] | |
Ti/TiO2@N719/I-/I3-/MWCNT/Separator/MWCNT/PVA-H3PO4/MWCNT | 1.83 | 6.47 | 28.30 | [11] | |
Ti Fiber@TiO2@dye/ I-/I3-/Stainless steel(ss)@PANi-SS@Space wire/H2SO4/ss@PANi | 2.12 | 4.56 | 46.00 | [18] | |
Ti/TiO2@N719/I-/I3-/Carbon fiber(CF)/EVA/Cu-CF@RuO2?xH2O/H3PO4/PVA/CF@RuO2?xH2O/EVA/Cu/PDMS | - | 5.64 | - | [46] | |
QDSSC-SPC | Glass/FTO/TiO2@CdS/CdSe/S2-/S/Cfiber@Cu2S/C/Electrolyte/C | 1.8 | [48] | ||
DSSC-LIB | Pt/Electrolyte/TNTs@N719/Ti/TNTs/Membrane/LiCoO2/Al | 0.82 | - | - | [49] |
PEN/ITO/TiO2@N719/I-/I3-/Pt/PEDOT/LiClO4/PEDOT/Pt | - | 4.37 | - | [50] | |
FTO/TiO2@N3/I-/I3-/Pt/PProDOT-Et2/LiClO4/PProDOT-Et2/Pt | 0.60 | 0.75 | 80.00 | [51] | |
FTO/Pt/ I-/I3-/TiO2 nanotube (ATO)@N749/Ti/ ATO/Separator/Li2SO4/ATO/Ti/FTO | 1.64 | 3.18 | 51.60 | [52] | |
FTO/TiO2@bis-EDOT dye/PEDOT/C/LiClO4/electrolyte/ppy/FTO | 0.10 | - | - | [53] |
Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|
FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon/Gel electrolyte/Carbon | 7.10 | 9.60 | 73.96 | [72] |
FTO/TiO2/Perovskite/Carbon/MnO2/Membrane SSE/Carbon | 5.26 | 7.79 | 67.50 | [13] |
ITO/pss/PTAA/Perovskite/PCBM/PEI/Ag/GRO/PVA/Separator/PVA/GRO | 10.97 | 13.66 | 80.31 | [73] |
FTO/TiO2/CH3NH3PbI3/MWCNT/PMMA/PVA/PANI@acSACNT/PMMA/SACNT | 1.92 | 2.71 | 70.90 | [74] |
PET/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/CuOHNT/AgNW/AuPd/MnO2/KOH/PVA/MnO2/AuPd/AgNW/CuOHNT | 6.97 | 10.41 | 67.00 | [75] |
Table 3 Performance comparison of in-situ integrative PSC-storage tandem cells
Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|
FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon/Gel electrolyte/Carbon | 7.10 | 9.60 | 73.96 | [72] |
FTO/TiO2/Perovskite/Carbon/MnO2/Membrane SSE/Carbon | 5.26 | 7.79 | 67.50 | [13] |
ITO/pss/PTAA/Perovskite/PCBM/PEI/Ag/GRO/PVA/Separator/PVA/GRO | 10.97 | 13.66 | 80.31 | [73] |
FTO/TiO2/CH3NH3PbI3/MWCNT/PMMA/PVA/PANI@acSACNT/PMMA/SACNT | 1.92 | 2.71 | 70.90 | [74] |
PET/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/CuOHNT/AgNW/AuPd/MnO2/KOH/PVA/MnO2/AuPd/AgNW/CuOHNT | 6.97 | 10.41 | 67.00 | [75] |
[1] | CELIK I, PHILLIPS A B, SONG Z N , et al. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy & Environmental Science, 2017,10(9):1874-1884. |
[2] |
SHUKLA R, SUMATHY K, ERICKSON P , et al. Recent advances in the solar water heating systems: a review. Renewable and Sustainable Energy Reviews, 2013,19:173-190.
DOI URL |
[3] | HEDLEY G J, RUSECKAS A, SAMUEL I D W. Light harvesting for organic photovoltaics. Chemical Reviews, 2016,117(2):796-837. |
[4] |
IONESCU C, BARACU T, VLAD G E , et al. The historical evolution of the energy efficient buildings. Renewable and Sustainable Energy Reviews, 2015,49:243-253.
DOI URL |
[5] |
SHARMA S, JAIN K K, SHARMA A . Solar cells: in research and applications—a review. Materials Sciences and Applications, 2015,6(12):1145.
DOI URL |
[6] |
RAN J R, ZHANG J, YU J G , et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 2014,43(22):7787-7812.
DOI URL |
[7] |
YUAN Y L, LU Y D, JIA B E , et al. Integrated system of solar cells with hierarchical NiCo2O4 battery-supercapacitor hybrid devices for self-driving light-emitting diodes. Nano-Micro Letters, 2019,11(1):42.
DOI URL |
[8] | YUAN Y L, WU Y H, ZHANG T , et al. Integration of solar cells with hierarchical CoSx nanonets hybrid supercapacitors for self-powered photodetection systems. Journal of Power Sources, 2018,404:118-125. |
[9] | SELVAM S, BALAMURALITHARAN B, KARTHICK S N , et al. Novel high-temperature supercapacitor combined dye sensitized solar cell from a sulfated β-cyclodextrin/PVP/MnCO3 composite. Journal of Materials Chemistry A, 2015,3(19):10225-10232. |
[10] | HASSANALIERAGH M, SOYATA T, NADEAU A , et al. UR-SolarCap: an open source intelligent auto-wakeup solar energy harvesting system for supercapacitor-based energy buffering. IEEE Access, 2016,4:542-557. |
[11] | YANG Z B, DENG J, SUN H , et al. Self-powered energy fiber: energy conversion in the sheath and storage in the core. Advanced Materials, 2014,26(41):7038-7042. |
[12] | MIYASAKA T, MURAKAMI T N . The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Applied Physics Letters, 2004,85(17):3932-3934. |
[13] |
LIU Z Y, ZHONG Y, SUN B , et al. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Applied Materials & Interfaces, 2017,9(27):22361-22368.
DOI URL |
[14] | GURUNG A, QIAO Q Q . Solar charging batteries: advances, challenges, and opportunities. Joule, 2018,2(7):1217-1230. |
[15] |
SCHMIDT D, HAGER M D, SCHUBERT U S . Photo-rechargeable electric energy storage systems. Advanced Energy Materials, 2016,6(1):1500369.
DOI URL |
[16] |
LECHENE B P, CLERC R, ARIAS A C . Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors. Solar Energy Materials and Solar Cells, 2017,172:202-212.
DOI URL |
[17] | LIU R Y, LIU Y Q, ZOU H Y , et al. Integrated solar capacitors for energy conversion and storage. Nano Research, 2017,10(5):1545-1559. |
[18] | FU Y P, WU H W, YE S Y , et al. Integrated power fiber for energy conversion and storage. Energy & Environmental Science, 2013,6(3):805-812. |
[19] | LIU H H, LI M P, KANER R B , et al. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/ conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Applied Materials & Interfaces, 2018,10(18):15609-15615. |
[20] | CHAPIN D M, FULLER C S, PEARSON G L . A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954,25(5):676-677. |
[21] | ALI H, KOUL S, GREGORY G , et al. In situ transmission electron microscopy study of molybdenum oxide contacts for silicon solar cells. Physica Status Solidi (a), 2019,216(7):1800998. |
[22] | CHAN C E, WENHAM S R, HALLAM B J , et al. Monolithically integrated solar cell system. U.S., 10/211, 354. 2019-2-19. |
[23] |
NOGAY G, SAHLI F, WERNER J , et al. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters, 2019,4(4):844-845.
DOI URL |
[24] |
ZHAO X W, WU H S, YANG L S , et al. High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon, 2019,147:164-171.
DOI URL |
[25] |
WU X W, LI J Y, TAN Y . Technology of preparing diamond wire cut multicrystalline silicon wafer texture surface. Journal of Inorganic Materials, 2017,32(9):985-990.
DOI URL |
[26] |
LIU X J, JIA L J, FAN G P , et al. Au nanoparticle enhanced thin-film silicon solar cells. Solar Energy Materials and Solar Cells, 2016,147:225-234.
DOI URL |
[27] |
REN X D, ZI W, MA Q , et al. Topology and texture controlled ZnO thin film electrodeposition for superior solar cell efficiency. Solar Energy Materials and Solar Cells, 2015,134:54-59.
DOI URL |
[28] | LIU X J, ZI W, LIU S Z. p-Layer bandgap engineering for high efficiency thin film silicon solar cells. Materials Science in Semiconductor Processing, 2015,39:192-199. |
[29] | LIU R Y, WANG J, SUN T , et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Letters, 2017,17(7):4240-4247. |
[30] | THEKKEKARA L V, JIA B H, ZHANG Y , et al. On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film. Applied Physics Letters, 2015,107(3):031105. |
[31] | UM H D, CHOI K H, HWANG I , et al. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy & Environmental Science, 2017,10(4):931-940. |
[32] | O'REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991,353(6346):737. |
[33] |
YUN S, FREITAS J N, NOGUEIRA A F , et al. Dye-sensitized solar cells employing polymers. Progress in Polymer Science, 2016,59:1-40.
DOI URL |
[34] | SU’AIT M S, RAHMAN M Y A, AHMAD A . Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy, 2015,115:452-470. |
[35] | MAHMOOD A . Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells. Journal of Energy Chemistry, 2015,24(6):686-692. |
[36] | MENG X D, YIN M, SHU T , et al. Research progress on counter electrodes of quantum dot-sensitized solar cells. Journal of Inorganic Materials, 2018,33(5):483-493. |
[37] | MURAKAMI T N, KAWASHIMA N, MIYASAKA T . A high- voltage dye-sensitized photocapacitor of a three-electrode system. Chemical Communications, 2005(26):3346-3348. |
[38] | SAITO Y, OGAWA A, UCHIDA S , et al. Energy-storable dye-sensitized solar cells with interdigitated nafion/polypyrrole-Pt comb-like electrodes. Chemistry Letters, 2010,39(5):488-489. |
[39] |
YANG Z B, LI L, LUO Y F , et al. An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. Journal of Materials Chemistry A, 2013,1(3):954-958.
DOI URL |
[40] | ZHANG X, HUANG X Z, LI C S , et al. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode. Advanced Materials, 2013,25(30):4093-4096. |
[41] |
COHN A P, ERWIN W R, SHARE K , et al. All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Letters, 2015,15(4):2727-2731.
DOI URL |
[42] | SKUNIK-NUCKOWSKA M, GRZEJSZCZYK K, KULESZ P J , et al. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. Journal of Power Sources, 2013,234:91-99. |
[43] | SCALIA A, BELLA F, LAMBERTI A , et al. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. Journal of Power Sources, 2017,359:311-321. |
[44] |
CHEN T, QIU L B, YANG Z L , et al. An integrated “energy wire” for both photoelectric conversion and energy storage. Angewandte Chemie International Edition, 2012,51(48):11977-11980.
DOI URL |
[45] |
CHEN X L, SUN H, YANG Z B , et al. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. Journal of Materials Chemistry A, 2014,2(6):1897-1902.
DOI URL |
[46] |
WEN Z, YEH M H, GUO H Y , et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016,2(10):e1600097.
DOI URL |
[47] | Best Research-Cell Efficiency Chart(NREL). https://www.nrel. gov/pv/cell-efficiency.html. |
[48] | SHI C L, DONG H, ZHU R , et al. An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy, 2015,13:670-678. |
[49] | GUO W X, XUE X Y, WANG S H , et al. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Letters, 2012,12(5):2520-2523. |
[50] |
CHEN H W, HSU C Y, CHEN J G , et al. Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources, 2010,195(18):6225-6231.
DOI URL |
[51] |
HSU C Y, CHEN H W, LEE K M , et al. A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films. Journal of Power Sources, 2010,195(18):6232-6238.
DOI URL |
[52] |
XU J, WU H, LU L F , et al. Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma‐assisted hydrogenation. Advanced Functional Materials, 2014,24(13):1840-1846.
DOI URL |
[53] |
LIU P, CAO Y L, LI G R , et al. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem, 2013,6(5):802-806.
DOI URL |
[54] |
YAN N F, LI G R, GAO X P . Electroactive organic compounds as anode-active materials for solar rechargeable redox flow battery in dual-phase electrolytes. Journal of The Electrochemical Society, 2014,161(5):A736-A741.
DOI URL |
[55] |
KAGAN C R, MITZI D B, DIMITRAKOPOULOS C D . Organic- inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999,286(5441):945-947.
DOI URL |
[56] |
MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure. Nature, 1994,369(6480):467.
DOI URL |
[57] |
KOJIAMA A, TESHIMA K, SHIRAI Y , et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009,131(17):6050-6051.
DOI URL |
[58] |
CHU Z Y, LI G L, JIANG Z H , et al. Recent progress in high-quality perovskite CH3NH3PbI3 single crystal. Journal of Inorganic Materials, 2018,33(10):1035-1045.
DOI URL |
[59] |
JIANG Q, CHU Z M, WANG P Y , et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Advanced Materials, 2017,29(46):1703852.
DOI URL |
[60] |
JIANG Q, ZHANG L Q, WANG H L , et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2017,2(1):16177.
DOI URL |
[61] |
XIONG L B, GUO Y X, WEN J , et al. Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials, 2018,28(35):1802757.
DOI URL |
[62] |
DJURIŠIĆ A B, LIU F Z, TAM H W , et al. Perovskite solar cells-an overview of critical issues. Progress in Quantum Electronics, 2017,53:1-37.
DOI URL |
[63] |
HUANG J, XIANG S H, YU J S , et al. Highly efficient prismatic perovskite solar cells. Energy & Environmental Science, 2019,12(3):929-937.
DOI URL |
[64] |
JUNG E H, JEON N J, PARK E Y , et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 2019,567(7749):511.
DOI URL |
[65] |
MUNDHAAS N, YU Z J, BUSH K A , et al. Series resistance measurements of perovskite solar cells using Jsc-Voc measurements. Solar RRL, 2019,3(4):1800378.
DOI URL |
[66] |
SCHMAGER R, GOMARD G, RICHARDS B S , et al. Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019,192:65-71.
DOI URL |
[67] | SHIN S S, SUK J H, KANG B J , et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy & Environmental Science, 2019,12(3):958-964. |
[68] |
XIAO Y Q, WANG C L, KONDAMAREDDY K K , et al. Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. Journal of Power Sources, 2019,422:138-144.
DOI URL |
[69] |
YANG D B, SANO T S, YAGUCHI Y , et al. Achieving 20% efficiency for low‐temperature‐processed inverted perovskite solar cells. Advanced Functional Materials, 2019,29(12):1807556.
DOI URL |
[70] |
WANG F Y, ZHANG Y H, YANG M F , et al. Exploring low-temperature processed a-WOx/SnO2 hybrid electron transporting layer for perovskite solar cells with efficiency >20.5%. Nano Energy, 2019,63:103825
DOI URL |
[71] |
XU X B, LI S H, ZHANG H , et al. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano, 2015,9(2):1782-1787.
DOI URL |
[72] |
LIANG J, ZHU G Y, LU Z P , et al. Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo- charging rate. Journal of Materials Chemistry A, 2017,6(5):2047-2052.
DOI URL |
[73] |
KIM J, LEE S M, HWANG Y H , et al. A highly efficient self-power pack system integrating supercapacitors and photovoltaics with an area-saving monolithic architecture. Journal of Materials Chemistry A, 2017,5(5):1906-1912.
DOI URL |
[74] |
LIU R H, LIU C H, FAN S S . A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge. Journal of Materials Chemistry A, 2017,5(44):23078-23084.
DOI URL |
[75] |
LI C, ISLAM M M, MOORE J L , et al. Wearable energy-smart ribbons for synchronous energy harvest and storage. Nature Communications, 2016,7:13319.
DOI URL |
[76] |
JIA C M, ZHAO X Y, LAI Y H , et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019,60:476-484.
DOI URL |
[77] |
HU Y X, BAI Y, LUO B , et al. A portable and efficient solar-rechargeable battery with ultrafast photo-charge/discharge rate. Advanced Energy Materials, 2019,9(28):1900872.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||