Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (4): 431-438.DOI: 10.15541/jim20190170
Special Issue: 功能陶瓷论文精选(二)
• RESEARCH PAPER • Previous Articles Next Articles
WANG Tong1,WANG Yuanhao1,YANG Haibo1(),GAO Shuya1,WANG Fen1,LU Yawen2
Received:
2019-04-22
Revised:
2019-06-12
Published:
2020-04-20
Online:
2019-09-12
Supported by:
CLC Number:
WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 431-438.
Fig. 1 Density as a function of sintering temperature for BTZN ceramics with inset showing the optimum sintering temperature and density of BTZN ceramics with different ZN content
Fig. 4 Frequency stability of dielectric properties for BTZN ceramic (a) Frequency dependence of dielectric constant (lines are linear fitting results) with inset showing the fitting values of a and b with different ZN content, and (b) frequency dependence of dielectric loss, (c) FCC, and (d) FCC as a function of ZN content
Fig. 5 Temperature dependence of dielectric constant and loss of BTZN ceramics from -100 ℃ to 500 ℃ (a)BTZN1; (b) BTZN2; (c) BTZN3; (d) BTZN4; (e) BTZN5; (f) BTZN6
Fig. 7 P-E loops of BTZN ceramics at critical electric field, room temperature and 10 Hz with direction of the arrow indicating the direction in which the ZN content increases with inset showing the BDS of BTZN ceramics with different ZN contents
Fig. 8 Energy storage properties of BTZN ceramics Pmax, Pr and Pmax-Pr of BTZN ceramics at 100 kV/cm; (b) Energy storage density (W); (c) Recoverable energy storage density (Wrec); (d) Energy loss density (Wloss); (e) Energy storage efficiency (η) as a function of electric field; (f) Variations of W, Wrec, Wloss and η at critical electric field with different ZN contents
[1] | ACOSTA M, NOVAK N, ROJAS V , et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev., 2017,4(4):041305. |
[2] | HENNINGS D, ROSENSTEIN G . Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J. Am. Ceram. Soc., 1984,67(4):249-254. |
[3] | JIANG X W, HAO H, ZHANG S J , et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc., 2019,39(4):1103-1109. |
[4] | HUANG Y A, LU B, YI X Z , et al. Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. J. Inorg. Mater., 2018,33(7):767-772. |
[5] | GHAYOUR H, ABDELLAHI M . A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol., 2016,292:84-93. |
[6] | ZEB A, MILNE S J . Temperature-stable dielectric properties from -20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J. Eur. Ceram. Soc., 2014,34(13):3159-3166. |
[7] | DAMJANOVIC D . Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998,61(9):1267-1324. |
[8] | GUO F Q, ZHANG B H, FAN Z X , et al. Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J. Mater. Sci.: Mater. Electron., 2016,27(6):5967-5971. |
[9] | YUAN Q B, LI G, YAO F Z , et al. Simultaneously achieved temperature- insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy, 2018,52:203-210. |
[10] | HAO X H . A review on the dielectric materials for high energy- storage application. J. Adv. Dielect., 2013,03(1):1330001. |
[11] | DU H L, YANG Z T, GAO F , et al. Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges. J. Inorg. Mater., 2018,33(10):1046-1058. |
[12] | YANG L T, KONG X, LI F , et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci., 2019,102:72-108. |
[13] | YAN F, YANG H B, LIN Y , et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem., 2017,56(21):13510-13516. |
[14] | YANG H B, YAN F, LIN Y , et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustainable Chem. Eng., 2017,5(11):10215-10222. |
[15] | YANG H B, YAN F, LIN Y , et al. Lead-free BaTiO3- Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc., 2017,37(10):3303-3311. |
[16] | YAN F, YANG H B, YING L , et al. Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J. Mater. Chem. C, 2018,6(29):7905-7912. |
[17] | LIU X Y, YANG H B, YAN F , et al. Enhanced energy storage properties of BaTiO3-Bi0.5Na0.5TiO3 lead-free ceramics modified by SrY0.5Nb0.5O3. J. Alloys Compd., 2019,778:97-104. |
[18] | YANG H B, LIU P F, YAN F , et al. A novel lead-free ceramic with layered structure for high energy storage applications. J. Alloys Compd., 2019,773:244-249. |
[19] | YANG Z T, GAO F, DU H L , et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 2019,58:768-777. |
[20] | WANG T, JIN L, TIAN Y , et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014,137:79-81. |
[21] | JIN L, LI F, ZHANG S J . Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc., 2014,97(1):1-27. |
[22] | WANG T, HU J C, YANG H B , et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys., 2017,121(8):084103. |
[23] | HUANG Y H, WU Y J, LI J , et al. Enhanced energy storage properties of barium strontium titanate ceramics prepared by Sol-Gel method and spark plasma sintering. J. Alloys Compd., 2017,701:439-446. |
[24] | PULI V S, PRADHAN D K, CHRISEY D B , et al. Structure, dielectric, ferroelectric, and energy density properties of (1-x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci., 2012,48(5):2151-2157. |
[25] | SUN Z, LI L X, YU S H , et al. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans., 2017,46(41):14341-14347. |
[26] | WANG T, JIN L, LI C C , et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 2015,98(2):559-566. |
[27] | HU Q Y, JIN L, WANG T , et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd., 2015,640:416-420. |
[28] | YUAN Q B, YAO F Z, WANG Y F , et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C, 2017,5(37):9552-9558. |
[29] | LI W B, ZHOU D, PANG L X , et al. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A, 2017,5(37):19607-19612. |
[30] | WANG X R, ZHANG Y, SONG X Z , et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 2012,32(3):559-567. |
[31] | WANG T, JIN L, SHU L L , et al. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloys Compd., 2014,617:399-403. |
[32] | YANG H B, YAN F, LIN Y , et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc., 2018,38(4):1367-1373. |
[33] | YANG H B, YAN F, ZHANG G , et al. Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd., 2017,720:116-125. |
[34] | WU T, PU Y P, CHEN K . Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int., 2013,39(6):6787-6793. |
[35] | WANG T, WANG Y H, YANG H B , et al. Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass-ceramics for energy storage. J. Adv. Dielect., 2018,8(6):1850041. |
[36] | GAO F, LIU J J, HONG R Z , et al. Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics. Ceram. Int., 2009,35(7):2687-2692. |
[37] | WANG T, WEI X Y, HU Q Y , et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B, 2013,178(16):1081-1086. |
[38] | YAN Y, NING C, JIN Z Z , et al. The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd., 2015,646:748-752. |
[39] | YANG Y, LIU K H, LIU X K , et al. Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int., 2016,42(6):7877-7882. |
[40] | SPAGNOL P D, VARELA J A, ZAGHETE M A , et al. Evidence of hetero-epitaxial growth of Pb(Mg1/3Nb2/3)O3 on the BaTiO3 seed particles of a citrate solution. Mater. Chem. Phys., 2002,77(3):918-923. |
[41] | YANG H B, YAN F, LIN Y , et al. Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy Technol., 2018,6(2):357-365. |
[42] | JIA W X, HOU Y D, ZHENG M P , et al. Superior temperature- stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc., 2018,101(8):3468-3479. |
[43] | SUN Y, LIU H, HAO H , et al. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J. Am. Ceram. Soc., 2015,98(5):1574-1579. |
[1] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[2] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[3] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[4] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[5] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[6] | WU Wei, BAKHET Shahd, ASANTE Naomi Addai, KAREEM Shefiu, KOMBO Omar Ramadhan, LI Binbin, DAI Honglian. In vitro Study of Biphasic Calcium Magnesium Phosphate Microspheres for Angiogenesis and Bone Formation [J]. Journal of Inorganic Materials, 2023, 38(7): 830-838. |
[7] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[8] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[9] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
[10] | WU Junlin, DING Jiyang, HUANG Xinyou, ZHU Danyang, HUANG Dong, DAI Zhengfa, YANG Wenqin, JIANG Xingfen, ZHOU Jianrong, SUN Zhijia, LI Jiang. Fabrication and Microstructure of Gd2O2S:Tb Scintillation Ceramics from Water-bath Synthesized Nano-powders: Influence of H2SO4/Gd2O3 Molar Ratio [J]. Journal of Inorganic Materials, 2023, 38(4): 452-460. |
[11] | CHEN Lei, HU Hailong. Evolution of Electric Field and Breakdown Damage Morphology for Flexible PDMS Based Dielectric Composites [J]. Journal of Inorganic Materials, 2023, 38(2): 155-162. |
[12] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[13] | SUN Jingwei, WANG Honglei, SUN Chuhan, ZHOU Xingui, JI Xiaoyu. Effects of Carbon Sources on Structure and Properties of TaC Ceramic Powder Prepared by Polymer Derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(2): 184-192. |
[14] | JIN Xihai, DONG Manjiang, KAN Yanmei, LIANG Bo, DONG Shaoming. Fabrication of Transparent AlON by Gel Casting and Pressureless Sintering [J]. Journal of Inorganic Materials, 2023, 38(2): 193-198. |
[15] | KANG Wenshuo, GUO Xiaojie, ZOU Kai, ZHAO Xiangyong, ZHOU Zhiyong, LIANG Ruihong. Enhanced Resistivity Induced by the Second Phase with Layered Structure in BiFeO3-BaTiO3 Ceramics [J]. Journal of Inorganic Materials, 2023, 38(12): 1420-1426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||