Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (7): 721-726.DOI: 10.15541/jim20180447
Previous Articles Next Articles
ZHANG Xiao-Chen1,WANG Xue-Mei2,WANG Chun-Lei2()
Received:
2018-09-20
Revised:
2018-11-13
Published:
2019-07-20
Online:
2019-06-26
Supported by:
CLC Number:
ZHANG Xiao-Chen, WANG Xue-Mei, WANG Chun-Lei. Influences of Sintering Methods on Microstructure and Physical Property of (K,Na,Li)(Nb,Sb,Ta)O3 Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2019, 34(7): 721-726.
Sample | Sintering conditions | ρ/(g?cm-3) | d33/(pC?N-1) | kp |
---|---|---|---|---|
CS | 1090 ℃, 5 h | 4.40 | 363 | 0.48 |
TSS-1 | 1130 ℃/1050 ℃, 4 h | 4.43 | 369 | 0.47 |
TSS-2 | 1140 ℃/1050 ℃, 4 h | 4.44 | 370 | 0.43 |
TSS-3 | 1150 ℃/1040 ℃, 4 h | 4.36 | 358 | 0.44 |
TSS-4 | 1150 ℃/1050 ℃, 4 h | 4.47 | 387 | 0.49 |
TSS-5 | 1150 ℃/1060 ℃, 4 h | 4.42 | 378 | 0.48 |
TSS-6 | 1160 ℃/1050 ℃, 4 h | 4.35 | 379 | 0.46 |
Table 1 Physical property of KNLNST ceramics prepared under different sintering conditions
Sample | Sintering conditions | ρ/(g?cm-3) | d33/(pC?N-1) | kp |
---|---|---|---|---|
CS | 1090 ℃, 5 h | 4.40 | 363 | 0.48 |
TSS-1 | 1130 ℃/1050 ℃, 4 h | 4.43 | 369 | 0.47 |
TSS-2 | 1140 ℃/1050 ℃, 4 h | 4.44 | 370 | 0.43 |
TSS-3 | 1150 ℃/1040 ℃, 4 h | 4.36 | 358 | 0.44 |
TSS-4 | 1150 ℃/1050 ℃, 4 h | 4.47 | 387 | 0.49 |
TSS-5 | 1150 ℃/1060 ℃, 4 h | 4.42 | 378 | 0.48 |
TSS-6 | 1160 ℃/1050 ℃, 4 h | 4.35 | 379 | 0.46 |
Fig. 2 Temperature dependence of dielectric permittivity ε' of two representative unpoled KNLNST ceramics, prepared by conventional sintering and two-step sintering, respectively. Inset is partially enlarged curves of dielectric temperature peak of the phase transition from orthorhombic to tetragonal phase
Fig. 3 Typical SEM images of domain patterns observed in the two unpoled representative KNLNST ceramics (a) KNLNST-CS ceramic; (b) Partially enlarged view of (a); (c) and (d) KNLNST-TSS ceramic, corresponding to different locations of the same specimen
Fig. 5 Typical SEM images of microstructure and domain patterns observed in a poled KNLNST-TSS ceramic. (a-c) Correspond to different positions of the same sample; (d) A partial enlarged image in (c)
[1] | GAO Y, ZHANG J L, ZONG X J , et al. Extremely temperature- stable piezoelectric properties of orthorhombic phase in (K,Na) NbO3- based ceramics. J. Appl. Phys., 2010, 107(7): 074101-1-5. |
[2] |
SAITO Y, TAKAO H, TANI T , et al. Lead-free piezoceramics. Nature, 2004,432(4):84-87.
DOI |
[3] |
GUO Y P, KAKIMOTO K, OHSATO H . Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett., 2004,85(18):4121-4123.
DOI URL |
[4] |
GUO Y P, KAKIMOTO K, OHSATO H .( Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater. Lett., 2005. 59(2/3):241-244.
DOI URL |
[5] | FU J, ZUO R Z, WANG X H , et al. Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3-modified (Na0.52K0.48)(Nb0.93Sb0.07)O3 lead-free ceramics. J. Phys. D: Appl. Phys., 2009, 42(1): 012006-1-4. |
[6] |
GAO Y, ZHANG J L, QIN Y L , et al. Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J. Am. Ceram. Soc., 2011,94(9):2968-2973.
DOI URL |
[7] |
ZHANG B Y, WU J G, CHENG X J , et al. Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl. Mater. Interfaces, 2013,5(16):7718-7725.
DOI URL |
[8] |
WANG X P, WU J G, XIAO D Q , et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics.[J]. Am. Chem. Soc., 2014,136(7):2905-2910.
DOI URL |
[9] |
ZHENG T, WU J G, CHEN Q , et al. Composition-driven phase boundary and piezoelectricity in potassium-sodium niobate-based ceramics. ACS Appl. Mater. Interfaces, 2015,7(36):20332-20341.
DOI URL |
[10] |
WU B, WU H J, WU J G , et al. Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence.[J]. Am. Chem. Soc., 2016,138(47):15459-15464.
DOI URL |
[11] |
XU K, LI J, LÜ X , et al. Superior piezoelectric properties in potassium- sodium niobate lead-free ceramics. Adv. Mater., 2016,28(38):8519-8523.
DOI URL |
[12] |
ZHANG M H, WANG K, DU Y J , et al. High and temperature- insensitive piezoelectric strain in alkali niobate lead-free perovskite.[J]. Am. Chem. Soc., 2017,139(10):3889-3895.
DOI URL |
[13] |
JAEGER E, EGERTON L . Hot pressing of potassium-sodium niobates.[J]. Am. Ceram. Soc., 1962,45(5):209-213.
DOI URL |
[14] |
ZHANG S J, LEE H J, MA C , et al. Sintering effect on microstructure and properties of (K, Na)NbO3 ceramics. J. Am. Ceram. Soc., 2011,94(11):3659-3665.
DOI URL |
[15] |
LI J F, WANG K, ZHANG B P , et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering.[J]. Am. Ceram. Soc., 2006,89(2):706-709.
DOI URL |
[16] |
ERIKSON M, YAN H X, VIOLA G , et al. Ferroelectric domain structures and electrical properties of fine-grained lead-free sodium potassium niobate ceramics.[J]. Am. Ceram. Soc., 2011,94(10):3391-3396.
DOI URL |
[17] |
CHEN I W, WANG H X . Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature, 2000,404(9):168-71.
DOI |
[18] |
WANG X H, CHEN P L, CHEN I W . Two-step sintering of ceramics with constant grain-size.[J]. Am. Ceram. Soc., 2006,89(2):431-437.
DOI URL |
[19] |
WANG X H, DENG X Y, BAI H L , et al. Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-Cu-Zn ferrite.[J]. Am. Ceram. Soc., 2006,89(2):438-443.
DOI URL |
[20] |
FANG J, WANG X H, TIAN Z B , et al. Two-step sintering: an approach to broaden the sintering temperature range of alkaline niobate-based lead-free piezoceramics.[J]. Am. Ceram. Soc., 2010,93(11):3552-3555.
DOI URL |
[21] |
PANG X M, QIU J H, ZHU K J , et al. ( K,Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering. Ceram. Int., 2012,38(3):2521-2527.
DOI URL |
[22] |
WU J G, WANG Y M . Two-step sintering of new potassium sodium niobate ceramics: a high d33 and wide sintering temperature range. Dalton Trans., 2014,43(34):12836-12841.
DOI URL |
[23] |
ZHANG J L, QIN Y L, GAO Y , et al. Improvement of physical properties for KNN-based ceramics by modified two-step sintering.[J]. Am. Ceram. Soc., 2014,97(3):759-764.
DOI URL |
[24] |
ARLT G, SASKO P . Domain configuration and equilibrium size of domains in BaTiO3 ceramics.[J]. Appl. Phys., 1980,51(9):4956-496.
DOI URL |
[25] |
JUAREZ R L, PERALTA O N, GARCÍA F G , et al. Ferroelectric domain structure of lead-free potassium-sodium niobate ceramics.[J]. Eur. Ceram. Soc., 2011,31(9):1861-1864.
DOI URL |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[3] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[4] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[5] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[6] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[7] | HUANG Longzhi, YIN Jie, CHEN Xiao, WANG Xinguang, LIU Xuejian, HUANG Zhengren. Selective Laser Sintering of SiC Green Body with Low Binder Content [J]. Journal of Inorganic Materials, 2022, 37(3): 347-352. |
[8] | WU Xishi, ZHU Yunzhou, HUANG Qing, HUANG Zhengren. Effect of Pore Structure of Organic Resin-based Porous Carbon on Joining Properties of Cf/SiC Composites [J]. Journal of Inorganic Materials, 2022, 37(12): 1275-1280. |
[9] | SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting [J]. Journal of Inorganic Materials, 2021, 36(6): 652-658. |
[10] | LIU Ziyu, TOCI Guido, PIRRI Angela, PATRIZI Barbara, FENG Yagang, CHEN Xiaopu, HU Dianjun, TIAN Feng, WU Lexiang, VANNINI Matteo, LI Jiang. Fabrication and Optical Property of Nd:Lu2O3 Transparent Ceramics for Solid-state Laser Applications [J]. Journal of Inorganic Materials, 2021, 36(2): 210-216. |
[11] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. |
[12] | ZHANG Junmin, CHEN Xiaowu, LIAO Chunjin, GUO Feiyu, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Optimizing Microstructure and Properties of SiCf/SiC Composites Prepared by Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2021, 36(10): 1103-1110. |
[13] | ZHU Danyang, QIAN Kang, CHEN Xiaopu, HU Zewang, LIU Xin, LI Xiaoying, PAN Yubai, MIHÓKOVÁ Eva, NIKL Martin, LI Jiang. Fine-grained Ce,Y:SrHfO3 Scintillation Ceramics Fabricated by Hot Isostatic Pressing [J]. Journal of Inorganic Materials, 2021, 36(10): 1118-1124. |
[14] | CHEN Lei,WANG Kai,SU Wentao,ZHANG Wen,XU Chenguang,WANG Yujin,ZHOU Yu. Research Progress of Transition Metal Non-oxide High-entropy Ceramics [J]. Journal of Inorganic Materials, 2020, 35(7): 748-758. |
[15] | WU Xiaojun,YANG Jie,ZHENG Rui,ZHANG Zhaofu,YANG Yi. Effect of Ablation Surface Microstructure on Plasma Arc Ablation Properties of C/C Throat Insert Fabricated via CVI+HPIC Methods [J]. Journal of Inorganic Materials, 2020, 35(6): 654-660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||