• 综述 • 上一篇
李涵涛1,2, 沈强1,2, 罗国强1,2, 王雪飞3, 高明4, 陈晨1,2,4
收稿日期:2025-07-18
修回日期:2025-09-19
通讯作者:
沈 强, 教授. E-mail: sqqf@263.net
作者简介:李涵涛(1998-), 男, 博士研究生. E-mail: lihantao0319@163.com
基金资助:LI Hantao1,2, SHEN Qiang1, LUO Guoqiang1,2, WANG Xuefei3, GAO Ming4, CHEN Chen4
Received:2025-07-18
Revised:2025-09-19
Contact:
SHEN Qiang, professor. E-mail: sqqf@263.net
About author:LI Hantao (1998-), male, PhD candidate. E-mail: lihantao0319@163.com
Supported by:摘要: 硅因其超高的理论比容量,被广泛认为是下一代高能量密度锂离子电池负极材料的理想候选。然而,实际应用中硅材料面临多种挑战,包括在反复充放电过程中发生剧烈的体积膨胀、较差的电导率以及电极-电解质界面的不稳定性。机械球磨技术作为一种固态加工技术,因其具有可调结构、操作简便和易于规模化等特点,显示出了在改善硅基负极材料性能方面的巨大潜力。该技术能够精确调控颗粒尺寸、形貌和结构特性,从而为提升材料性能提供了高效且灵活的策略,且不需要过于复杂或苛刻的加工条件。本文综述了机械球磨技术在硅基负极材料性能调控方面的最新研究进展。研究内容涵盖了纳米硅的可控制备、硅-碳复合材料的合理设计、硅-金属及金属硅化物复合体系的构建,以及原位包覆策略的实施等方面。这些研究表明,机械球磨技术在提升硅基负极材料的结构稳定性和电化学性能方面发挥了至关重要的作用。此外,文章还探讨了当前在这一领域中面临的主要挑战,如复合材料均匀性差、球磨过程中能量输入控制的复杂性,以及界面反应机制理解得不足等问题。最后,文章提出了该领域未来的研究方向,包括智能球磨、界面工程和数据驱动的优化方法,以期为高性能硅基负极材料在高能量密度锂离子电池中的应用和推广提供重要的参考。
中图分类号:
李涵涛, 沈强, 罗国强, 王雪飞, 高明, 陈晨. 机械球磨法调控硅基负极材料结构与性能的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250304.
LI Hantao, SHEN Qiang, LUO Guoqiang, WANG Xuefei, GAO Ming, CHEN Chen. Progress in Structure and Performance Regulation of Silicon-based Anode Materials via Mechanical Ball Milling[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250304.
| [1] BRANDT K.Historical development of secondary lithium batteries.Solid State Ionics, 1994, 69(3/4): 173. [2] SELVARAJ V, VAIRAVASUNDARAM I.A comprehensive review of state of charge estimation in lithium-ion batteries used in electric vehicles.Journal of Energy Storage, 2023, 72: 108777. [3] ZHANG Y, LIU H, XIE Z,et al. Progress and perspectives of lithium aluminum germanium phosphate-based solid electrolytes for lithium batteries. Advanced Functional Materials, 2023, 33(32): 2300973. [4] LI P, KIM H, MYUNG S T,et al. Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Materials, 2021, 35: 550. [5] ZHANG X, WANG D, QIU X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications, 2020, 11(1): 3826. [6] HE S, HUANG S, WANG S,et al. Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications. Energy & Fuels, 2020, 35(2): 944. [7] STODDART A.Lithium-ion batteries: Stress relief for silicon.Nature Reviews Materials, 2017, 2(8): 1. [8] WU H, CUI Y.Designing nanostructured Si anodes for high energy lithium ion batteries.Nano Today, 2012, 7(5): 414. [9] HAN M, LIN Z, JI X,et al. Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes. Materials Today Energy, 2020, 17: 100445. [10] KIM S Y, KIM C H, YANG C M.Binder-free silicon anodes wrapped in multiple graphene shells for high-performance lithium-ion batteries.Journal of Power Sources, 2021, 486: 229350. [11] CHOU S L, WANG J Z, CHOUCAIR M,et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010, 12(2): 303. [12] DENG T, ZHOU H, LIU Y,et al. Research progress in the preparation of silicon-carbons anode by chemical vapor deposition. Energy Storage Science and Technology, 2025, 14(9): 3354. [13] XIAO Z, H. WU H, QUAN L,et al. Micro-sized CVD-derived Si-C anodes: challenges, strategies, and prospects for next-generation high-energy lithium-ion batteries. Energy & Environmental Science, 2025, 18: 4037. [14] JUNG D, HWANG T, PARK S, et al. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Letters, 2013 ,13(5): 2092. [15] SHIH J, CHEN Y, Y. JAMES Y, et al. Suppressed volume change of a spray-dried 3D spherical-like Si/graphite composite anode for high-rate and long-term lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(38): 12706. [16] HUANG B, TSUI L, RAMKI S,et al. Synthesizing Si/SiOC composites through different Sol-Gel reaction routes for lithium-ion battery anode materials. Heliyon, 2024, 10(13): e33612. [17] HUANG H, HUANG B, HSU H, et al. Synthesis of silicon oxycarbide beads from alkoxysilane as anode materials for lithium-ion batteries. ACS Omega, 2023, 8(4): 4165. [18] YAN M, MARTELL S, PATWARDHAN S V, et al. Key developments in magnesiothermic reduction of silica: insights into reactivity and future prospects. Chemical Science, 2024, 15(39): 15954. [19] HOOVER H, BELL R, RIPPY K, et al. Emerging technologies for decarbonizing silicon production. Journal of Sustainable Metallurgy, 2024, 10: 1921. [20] CETINKAYA T, CEVHER O, TOCOGLU U, et al. Electrochemical characterization of the powder silicon anodes reinforced with graphite using planetary ball milling. Acta Physica Polonica A, 2013, 123(2): 393. [21] KORAAG P, FIRDAUS A, HAWARI N, et al. Covalently bonded ball-milled silicon/CNT nanocomposite as lithium-ion battery anode material. Batteries, 2022, 8(10): 165. [22] SPEIGHT I R, ARDILA-FIERRO K J, HERNÁNDEZ J G,et al. Ball milling for mechanochemical reactions. Nature Reviews Methods Primers, 2025, 5(1): 1. [23] GE M, CAO C, BIESOLD G M,et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Advanced Materials, 2021, 33(16): 2004577. [24] ZHAO X, LEHTO V P.Challenges and prospects of nanosized silicon anodes in lithium-ion batteries.Nanotechnology, 2020, 32(4): 042002. [25] ZHANG Q, YANG Y, WANG D,et al. A silicon/carbon/reduced-graphene composite of honeycomb structure for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2023, 944: 169185. [26] ROBERTS G A, CAIRNS E J, REIMER J A.Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources, 2002, 110(2): 424. [27] B-science.net. Li-ion battery high-energy silicon anode innovation & patent review. (2025-02-03) [2025-11-3]. Li-Ion-Battery-High-Energy-Anode-Innovation-Patent-Review-b-science.net-Preview. [28] BURMEISTER C F, KWADE A.Process engineering with planetary ball mills.Chemical Society Reviews, 2013, 42(18): 7660. [29] GAUTHIER M, MAZOUZI D, REYTER D,et al. A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy & Environmental Science, 2013, 6(7): 2145. [30] PAN W, CAI X, YANG C,et al. Amorphous Si/TiC/Graphite composite fabricated by high-energy ball-milling as an anode for lithium-ion batteries. Journal of Electronic Materials, 2021, 50(5): 2584. [31] ZHANG L, HUANG S, DING Y,et al. Research progress in the preparation of sodium-ion battery anode materials using ball milling. RSC Advances, 2025, 15(8): 6324. [32] GOYAL A, DEMMENIE M, HUANG C C,et al. Photophysical properties of ball milled silicon nanostructures. Faraday Discussions, 2020, 222: 96. [33] CAO Y, DUNLAP R A, OBROVAC M N.Electrochemistry and thermal behavior of SiOx made by reactive gas milling. Journal of The Electrochemical Society, 2020, 167(11): 110501. [34] CAO Y, BENNETT J C, DUNLAP R A,et al. Li insertion in ball milled Si-Mn alloys. Journal of The Electrochemical Society, 2018, 165(9): A1734. [35] LIU B, LU H, CHU G,et al. Size effect of Si particles on the electrochemical performances of Si/C composite anodes. Chinese Physics B, 2018, 27(8): 088201. [36] LIU X H, ZHONG L, HUANG S,et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6(2): 1522. [37] ZHU B, JIN Y, TAN Y, et al. Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Letters, 2015, 15(9): 5750. [38] ZHANG Y, MA H, YU C,et al. Si nanoplates prepared by ball milling photovoltaic silicon sawdust waste as lithium-ion batteries anode material. Materials Letters, 2023, 331: 133469. [39] XU B, CHEN Q, QIU B,et al. Effect of process control agents on preparation of nano-silicon powders by ball milling. Journal of Functional Materials, 2018, 49(12): 12205. [40] HE S, SHUAI Y, WANG Z,et al. Surface modification and electrochemical performance of amorphous silicon matrix composites by wet ball milling. Shandong Chemical Industry, 2022, 51(08): 32. [41] HU J, MENG Y S, HU Q R.Synthesis of nickel phosphide/nitrogen phosphorus co-doped carbon and its application in lithium ion batteries.Journal of Electrochemistry, 2021, 27(5): 540. [42] MA C, WANG Z, ZHAO Y,et al. A novel raspberry-like yolk-shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 844: 156201. [43] WANG F, SONG C, ZHAO B,et al. One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries. Chemical Communications, 2020, 56(7): 1109. [44] ZHANG Y, ZHOU Q, ZHU J,et al. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Advanced Functional Materials, 2017, 27(35): 1702317. [45] DOS REIS G S, MOLAIYAN P, SUBRAMANIYAM C M,et al. Biomass-derived carbon-silicon composites (C@Si) as anodes for lithium-ion and sodium-ion batteries: a promising strategy towards long-term cycling stability: a mini review. Electrochemistry Communications, 2023, 153: 107536. [46] SUN J, LUO B, LI H.A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: past, present, and future.Advanced Energy and Sustainability Research, 2022, 3(6): 2100191. [47] DU Y, YANG Z, YANG Y,et al. Mussel-pearl-inspired design of Si/C composite for ultrastable lithium storage anodes. Journal of Alloys and Compounds, 2021, 872: 159717. [48] HAN J, ZHAO C, WANG L,et al. Simple ball milling-assisted method enabling N-doped carbon embedded Si for high performance lithium-ion battery anode. Journal of Alloys and Compounds, 2023, 966: 171668. [49] YANG D, LV T, SONG J,et al. Enabling stable high-performance CoO-assisted Si@C anode via ball milling strategy. Journal of Physics and Chemistry of Solids, 2024, 189: 111956. [50] ZHANG Y, CHENG Y, SONG J,et al. Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries. Carbon, 2021, 181: 300. [51] DING B, CAI Z, AHSAN Z,et al. A review of metal silicides for lithium-ion battery anode application. Acta Metallurgica Sinica, 2021, 34: 291. [52] ZHAO W, DU N, XIAO C,et al. Large-scale synthesis of Ag-Si core-shell nanowall arrays as high-performance anode materials of Li-ion batteries. Journal of Materials Chemistry A, 2014, 2(34): 13949. [53] KIM H, SON Y, PARK C,et al. Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation. Nano Letters, 2015, 15(6): 4135. [54] LIU K, GUO D, LI Y,et al. Preparation of Si/Sn@C composite anodes through in-situ self-formed templating for enhanced lithium storage. Journal of Electroanalytical Chemistry, 2025, 978: 118879. [55] MORIGA T, WATANABE K, TSUJI D,et al. Reaction mechanism of metal silicide Mg2Si for Li insertion. Journal of Solid State Chemistry, 2000, 153(2): 386. [56] CHEN Z, WANG X, JIAN T,et al. One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries. Solid State Ionics, 2020, 354: 115406. [57] LIU W R, WU N L, SHIEH D T,et al. Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries. Journal of The Electrochemical Society, 2006, 154(2): A97. [58] ZHANG K, MAO H, GU X,et al. ZIF-derived cobalt-containing N-doped carbon-coated SiOx nanoparticles for superior lithium storage. ACS Applied Materials & Interfaces, 2020, 12(6): 7206. [59] XI F, ZHANG Z, WAN X,et al. High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12(43): 49080. [60] KUMAR P, BERHAUT C L, ZAPATA DOMINGUEZ D,et al. Nano-architectured composite anode enabling long-term cycling stability for high-capacity lithium-ion batteries. Small, 2020, 16(11): 1906812. [61] LIN L, MA Y, XIE Q,et al. Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries. ACS Nano, 2017, 11(7): 6893. [62] 赵静. 高熵锂/钠离子电池负极材料的设计及性能研究. 长春: 吉林大学博士学位论文, 2022. [63] ZHANG Y, CHEN M, CHEN Z,et al. Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag. Journal of Alloys and Compounds, 2021, 876: 160125. [64] RUTTERT M, SIOZIOS V, WINTER M, et al. Mechanochemical synthesis of iron silicon alloys and their electrochemical characterization as high energy anode materials. The Electrochemical Society, 2019(1): 19. [65] 冯志远. 锂离子电池硅合金负极材料的制备及其储锂性能研究. 长沙: 中南大学硕士学位论文, 2022. [66] LI W, LI X, LIAO J,et al. A new family of cation-disordered Zn(Cu)-Si-P compounds as high-performance anodes for next-generation Li-ion batteries. Energy & Environmental Science, 2019, 12(7): 2286. [67] Zhao T, Zhu D, Li W,et al. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes. Journal of Power Sources, 2019, 439: 227027. [68] LI W, TANG Y, KANG W,et al. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small, 2015, 11(11): 1345. [69] SOURICE J, QUINSAC A, LECONTE Y, et al. One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries. ACS Applied Materials & Interfaces, 2015, 7(12): 6637. [70] SHI J, GAO H, HU G,et al. Core-shell structured Si@C nanocomposite for high-performance Li-ion batteries with a highly viscous gel as precursor. Journal of Power Sources, 2019, 438: 227001. [71] SUNG J, KIM N, MA J,et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nature Energy, 2021, 6(12): 1164. [72] YU C, LIN X, CHEN X, et al. Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes. Nano Letters, 2020, 20(7): 5176. [73] AI Q, FANG Q, LIANG J,et al. Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy, 2020, 72: 104657. [74] LI L, FANG C, WEI W,et al. Nano-ordered structure regulation in delithiated Si anode triggered by homogeneous and stable Li-ion diffusion at the interface. Nano Energy, 2020, 72: 104651. [75] SI Q, HANAI K, ICHIKAWA T,et al. Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. Journal of Power Sources, 2011, 196(22): 9774. [76] GUO B, SHU J, WANG Z,et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochemistry Communications, 2008, 10(12): 1876. [77] LIU Z, YU Q, ZHAO Y,et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 2019, 48(1): 285. [78] TIE X, HAN Q, LIANG C,et al. Si@SiOx/graphene nanosheets composite: ball milling synthesis and enhanced lithium storage performance. Frontiers in Materials, 2017, 4: 47. [79] WANG D, GAO M, PAN H, et al. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. Journal of Power Sources, 2014, 256: 190. [80] MARTIÍN-GIL M, RABANAL M E, VÁREZ A,et al. Mechanical grinding of Si3N4 to be used as an electrode in lithium batteries. Materials Letters, 2003, 57(20): 3063. [81] YANG J, TAKEDA Y, IMANISHI N,et al. Novel composite anodes based on nano-oxides and Li2.6Co0.4N for lithium ion batteries. Electrochimica Acta, 2001, 46(17): 2659. [82] SUZUKI N, CERVERA R B, OHNISHI T,et al. Silicon nitride thin film electrode for lithium-ion batteries. Journal of Power Sources, 2013, 231: 186. [83] AHN D, KIM C, LEE J G,et al. The effect of nitrogen on the cycling performance in thin-film Si1-xNx anode. Journal of Solid State Chemistry, 2008, 181(9): 2139. [84] SHAW L L, YANG Z G, REN R M.Synthesis of nanostructured Si3N4/SiC composite powders through high energy reaction milling.Materials Science and Engineering: A, 1998, 244(1): 113. [85] XIAO Z, LEI C, YU C,et al. Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Materials, 2020, 24: 565. [86] DE GUZMAN R C, YANG J, CHENG M M C,et al. High capacity silicon nitride-based composite anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2(35): 14577. [87] MEI S, GUO S, XIANG B,et al. Enhanced ion conductivity and electrode-electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries. Journal of Energy Chemistry, 2022, 69: 616. [88] CALKA A, WILLIAMS J S.Synthesis of nitrides by mechanical alloying.Materials science forum, 1992, 88: 787. [89] HERNANDHA R F H, UMESH B, RATH P C,et al. N-containing carbon-coated β-Si3N4 enhances Si anodes for high-performance Li-ion batteries. Advanced Science, 2023, 10(21): 2301218. |
| [1] | 闫共芹, 王晨, 蓝春波, 洪雨昕, 叶维超, 付向辉. Al掺杂P2型Na0.8Ni0.33Mn0.67-xAlxO2钠离子电池正极材料的制备与电化学性能[J]. 无机材料学报, 2025, 40(9): 1005-1012. |
| [2] | 王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, 2025, 40(8): 911-920. |
| [3] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
| [4] | 谭博文, 耿双龙, 张锴, 郑百林. 硅电极组分梯度设计抑制力-化学耦合劣化[J]. 无机材料学报, 2025, 40(7): 772-780. |
| [5] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
| [6] | 陈义, 邱海鹏, 陈明伟, 徐昊, 崔恒. SiC/SiC复合材料基体硼改性方法及其力学性能研究[J]. 无机材料学报, 2025, 40(5): 504-510. |
| [7] | 熊思宇, 莫尘, 朱肖伟, 朱国斌, 陈德钦, 刘来君, 施晓东, 李纯纯. 超低介电常数LiBxAl1-xSi2O6微波介质陶瓷的低温烧结[J]. 无机材料学报, 2025, 40(5): 536-544. |
| [8] | 万俊池, 杜路路, 张永上, 李琳, 刘建德, 张林森. Na4FexP4O12+x/C钠离子电池正极材料的结构演变及其电化学性能[J]. 无机材料学报, 2025, 40(5): 497-503. |
| [9] | 薛柯, 蔡长焜, 谢满意, 李舒婷, 安胜利. 固体氧化物燃料电池Pr1+xBa1-xFe2O5+δ阴极材料的制备及电化学性能研究[J]. 无机材料学报, 2025, 40(4): 363-371. |
| [10] | 李紫薇, 弓伟露, 崔海峰, 叶丽, 韩伟健, 赵彤. 前驱体法制备(Zr, Hf, Nb, Ta, W)C-SiC复相陶瓷及性能研究[J]. 无机材料学报, 2025, 40(3): 271-280. |
| [11] | 张宇婷, 李晓斌, 刘尊义, 李宁, 赵鹬. 复合蛋黄壳型NiCo2V2O8@TiO2@NC材料用作锂离子电池负极研究[J]. 无机材料学报, 2025, 40(11): 1221-1228. |
| [12] | 唐阳, 刘立敏, 周晓亮, 张搏, 蒋星洲, 贾浩义, 罗延麟庆. 质子陶瓷膜反应器的制备及低温氨分解性能研究[J]. 无机材料学报, 2025, 40(11): 1277-1284. |
| [13] | 赵丽华, 王言帅, 尹昕妩, 毛叶琼, 牛德超. 负载硫化铋纳米簇的硅基杂化胶束的制备及其光热抗菌性能[J]. 无机材料学报, 2025, 40(10): 1129-1136. |
| [14] | 王月月, 黄佳慧, 孔红星, 李怀珠, 姚晓红. 载银放射状介孔二氧化硅的制备及其在牙科树脂中的应用[J]. 无机材料学报, 2025, 40(1): 77-83. |
| [15] | 王浩, 刘学超, 郑重, 潘秀红, 徐锦涛, 朱新锋, 陈锟, 邓伟杰, 汤美波, 郭辉, 高攀. 非本征背照触发平面型4H-SiC光导开关性能研究[J]. 无机材料学报, 2024, 39(9): 1070-1076. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||