无机材料学报

• 综述 • 上一篇    

机械球磨法调控硅基负极材料结构与性能的研究进展

李涵涛1,2, 沈强1,2, 罗国强1,2, 王雪飞3, 高明4, 陈晨1,2,4   

  1. 1.武汉理工大学 材料复合新技术国家重点实验室,武汉 430070;
    2.武汉理工大学 材料科学与工程学院,武汉 430070;
    3.武汉理工大学 化学化工与生命科学学院,武汉 430070;
    4.国创高科实业集团有限公司,武汉 430223
  • 收稿日期:2025-07-18 修回日期:2025-09-19
  • 通讯作者: 沈 强, 教授. E-mail: sqqf@263.net
  • 作者简介:李涵涛(1998-), 男, 博士研究生. E-mail: lihantao0319@163.com
  • 基金资助:
    中国工程院院地合作项目“石英产品高端化发展战略研究”(2024-DFZD-01); 国创高科-武汉理工联合技术研究中心项目“先进复合材料研制”(303-612307621)

Progress in Structure and Performance Regulation of Silicon-based Anode Materials via Mechanical Ball Milling

LI Hantao1,2, SHEN Qiang1, LUO Guoqiang1,2, WANG Xuefei3, GAO Ming4, CHEN Chen4   

  1. 1. State Key Laboratory of Advanced Technology For Materials Synthesis and Processing, Wuhan University of Technology, WuHan 430070, China;
    2. School of Materials Science and Engineering, Wuhan University of Technology, WuHan 430070, China;
    3. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, WuHan 430070, China;
    4. GuoChuang Hi-Tech Industrial Group Co., LTD, WuHan 430223, China
  • Received:2025-07-18 Revised:2025-09-19
  • Contact: SHEN Qiang, professor. E-mail: sqqf@263.net
  • About author:LI Hantao (1998-), male, PhD candidate. E-mail: lihantao0319@163.com
  • Supported by:
    Chinese Academy of Engineering Academy-Local Cooperation Project "Strategic Research on High-End Development of Quartz Products" (2024-DFZD-01); GuoChuang Hi-Tech-Wuhan University of Technology Joint Technology Research Center Project "Development of Advanced Composite Materials" (303-612307621)

摘要: 硅因其超高的理论比容量,被广泛认为是下一代高能量密度锂离子电池负极材料的理想候选。然而,实际应用中硅材料面临多种挑战,包括在反复充放电过程中发生剧烈的体积膨胀、较差的电导率以及电极-电解质界面的不稳定性。机械球磨技术作为一种固态加工技术,因其具有可调结构、操作简便和易于规模化等特点,显示出了在改善硅基负极材料性能方面的巨大潜力。该技术能够精确调控颗粒尺寸、形貌和结构特性,从而为提升材料性能提供了高效且灵活的策略,且不需要过于复杂或苛刻的加工条件。本文综述了机械球磨技术在硅基负极材料性能调控方面的最新研究进展。研究内容涵盖了纳米硅的可控制备、硅-碳复合材料的合理设计、硅-金属及金属硅化物复合体系的构建,以及原位包覆策略的实施等方面。这些研究表明,机械球磨技术在提升硅基负极材料的结构稳定性和电化学性能方面发挥了至关重要的作用。此外,文章还探讨了当前在这一领域中面临的主要挑战,如复合材料均匀性差、球磨过程中能量输入控制的复杂性,以及界面反应机制理解得不足等问题。最后,文章提出了该领域未来的研究方向,包括智能球磨、界面工程和数据驱动的优化方法,以期为高性能硅基负极材料在高能量密度锂离子电池中的应用和推广提供重要的参考。

关键词: 硅, 负极材料, 机械球磨, 电化学性能

Abstract: Silicon, due to its exceptionally high theoretical capacity, is widely regarded as an ideal candidate for the anode material in next-generation high-energy-density lithium-ion batteries. However, its practical application is limited by several critical issues, including significant volume expansion during repeated cycling, poor intrinsic conductivity, and instability at the electrode-electrolyte interface. Mechanical ball milling, a solid-state processing technique, offers significant advantages in the performance enhancement of silicon-based anode materials due to its adjustable structure, simplicity in operation, and scalability. This method enables precise control over particle size, morphology, and structural characteristics, providing an efficient and flexible strategy for improving material performance without the need for overly complex or stringent processing conditions. This review summarizes the recent progress in the application of mechanical ball milling for the performance optimization of silicon-based anode materials. Representative advancements include the controlled preparation of nanosilicon, rational design of silicon-carbon composite materials, construction of silicon-metal and metal silicide composite systems, and the implementation of in situ coating strategies. Overall, these studies clearly demonstrate that mechanical ball milling plays a key role in enhancing the structural stability and electrochemical performance of silicon-based anodes. Furthermore, the paper discusses the main challenges currently faced in this field, such as poor uniformity of composite materials, the complexity of controlling energy input during milling, and limited understanding of the interface reaction mechanisms. Finally, emerging directions in the field are highlighted, including smart ball milling, interface engineering, and data-driven optimization, which are expected to provide valuable insights for the practical application and commercial promotion of high-performance silicon-based anode materials in high-energy-density lithium-ion batteries.

Key words: silicon, anode materials, mechanical ball milling, electrochemical performance

中图分类号: