无机材料学报 ›› 2025, Vol. 40 ›› Issue (11): 1277-1284.DOI: 10.15541/jim20250057
唐阳1(
), 刘立敏1,2(
), 周晓亮1,2,3, 张搏3, 蒋星洲1, 贾浩义1, 罗延麟庆1
收稿日期:2025-02-14
修回日期:2025-04-17
出版日期:2025-11-20
网络出版日期:2025-05-22
通讯作者:
刘立敏, 副教授. E-mail: liulimin_ly@126.com作者简介:唐 阳(2001-), 男, 硕士研究生. E-mail: 2630565355@qq.com
基金资助:
TANG Yang1(
), LIU Limin1,2(
), ZHOU Xiaoliang1,2,3, ZHANG Bo3, JIANG Xingzhou1, JIA Haoyi1, LUO Yanlinqing1
Received:2025-02-14
Revised:2025-04-17
Published:2025-11-20
Online:2025-05-22
Contact:
LIU Limin, associate professor. E-mail: liulimin_ly@126.comAbout author:TANG Yang (2001-), male, Master candidate. E-mail: 2630565355@qq.com
Supported by:摘要:
氨气(NH3)作为一种储氢材料, 具有高储氢密度、易液化等优点, 因此利用氨分解制氢是一种理想的氢气(H2)制备方法。但传统氨分解的工作温度过高, 中低温下NH3转化效率过低且H2纯度较低, 无法实现H2的有效制取。本研究通过共压法制备了具有多孔电极Ni-BZCY/BZCY/Ni-BZCY(BZCY: BaZr0.1Ce0.7Y0.2O3-δ)对称结构的质子陶瓷膜反应器(PCMR)。在600 ℃时, PCMR在H2与NH3气氛下分别实现了0.11和0.23 Ω·cm2的极化阻抗(Rp), 在0.8 V外加电压下其电流密度分别达到1.87和1.56 A·cm-2; 在300 ℃、0.8 V外加电压下, H2与NH3中的电流密度仍能分别达到0.16和0.06 A·cm-2。通过共压法所制备的PCMR在600 ℃下的NH3分解转化效率达到80%, 比裸催化剂材料提升了8%, 在350 ℃仍能实现0.3%的提升, 即使在300 ℃下NH3转化效率也达到约1%。本研究为实现低温氨分解制氢提供了新的思路。
中图分类号:
唐阳, 刘立敏, 周晓亮, 张搏, 蒋星洲, 贾浩义, 罗延麟庆. 质子陶瓷膜反应器的制备及低温氨分解性能研究[J]. 无机材料学报, 2025, 40(11): 1277-1284.
TANG Yang, LIU Limin, ZHOU Xiaoliang, ZHANG Bo, JIANG Xingzhou, JIA Haoyi, LUO Yanlinqing. Proton Ceramic Membrane Reactor: Preparation and Low-temperature Ammonia Decomposition Performance[J]. Journal of Inorganic Materials, 2025, 40(11): 1277-1284.
图2 样品的XRD图谱
Fig. 2 XRD patterns of samples (a) BZCY calcined at 1000 ℃ for 5 h in air and calcined at 400 and 600 ℃ for 4 h in NH3; (b) NiO-BZCY and Ni-BZCY treated with H2 and NH3 for 4 h at 400 ℃
图3 PCMR (a)截面、(b)电解质、(c, d)两侧电极的SEM照片和(e~j) NiO-BZCY电极的EDS元素分布图
Fig. 3 SEM images of (a) cross-section, (b) electrolyte, and (c, d) electrodes on both sides of PCMR, and (e-j) EDS elemental mappings of NiO-BZCY electrode
| Reactor structure | Temperature/℃, gas environment | Voltage/V | Current density/ (A·cm-2) | Ref. |
|---|---|---|---|---|
| Ni-BZCY/BZCY/Ni-BZCY | 650, 50% H2-N2 (measured at only 650 ℃) | 0.8 | 2.0 | [ |
| LSV-Ce-Pd/BZCYCu/LSV-Ce-Pd | 600, H2 (3% H2O) | 1.0 | 0.92 | [ |
| Ni-BZCY/BZCY/Ni-BZCY | 450, 60% H2 (maximum testing temperature of 450 ℃) | 1.0 | 0.53 | [ |
| Ni-BZCYYb/BZCYYb/Ni-BZCYYb | 600, 50% H2-N2 | 0.8 | 1.78 | [ |
| Ni-BZCY/BZCY/Ni-BZCY | 600, H2 (3% H2O) | 0.8 | 1.87 | This work |
| Ni-BZCY/BZCY/Ni-BZCY | 600, NH3 | 0.8 | 1.56 | This work |
表1 部分对称型PCMR的电流密度
Table 1 Current density of partially symmetrical PCMR
| Reactor structure | Temperature/℃, gas environment | Voltage/V | Current density/ (A·cm-2) | Ref. |
|---|---|---|---|---|
| Ni-BZCY/BZCY/Ni-BZCY | 650, 50% H2-N2 (measured at only 650 ℃) | 0.8 | 2.0 | [ |
| LSV-Ce-Pd/BZCYCu/LSV-Ce-Pd | 600, H2 (3% H2O) | 1.0 | 0.92 | [ |
| Ni-BZCY/BZCY/Ni-BZCY | 450, 60% H2 (maximum testing temperature of 450 ℃) | 1.0 | 0.53 | [ |
| Ni-BZCYYb/BZCYYb/Ni-BZCYYb | 600, 50% H2-N2 | 0.8 | 1.78 | [ |
| Ni-BZCY/BZCY/Ni-BZCY | 600, H2 (3% H2O) | 0.8 | 1.87 | This work |
| Ni-BZCY/BZCY/Ni-BZCY | 600, NH3 | 0.8 | 1.56 | This work |
| Temperature/℃ | H2 | NH3 | ||||
|---|---|---|---|---|---|---|
| Rtotal | RΩ | Rp | Rtotal | RΩ | Rp | |
| 600 | 0.48 | 0.37 | 0.11 | 0.67 | 0.44 | 0.23 |
| 500 | 0.72 | 0.47 | 0.25 | 1.28 | 0.61 | 0.67 |
| 400 | 1.98 | 0.81 | 1.17 | 3.31 | 1.09 | 2.22 |
| 300 | 9.23 | 1.54 | 7.69 | 17.31 | 2.80 | 14.51 |
表2 PCMR在H2、NH3气氛下的阻抗(Ω·cm2)
Table 2 Resistances under H2 and NH3 environments for PCMR (Ω·cm2)
| Temperature/℃ | H2 | NH3 | ||||
|---|---|---|---|---|---|---|
| Rtotal | RΩ | Rp | Rtotal | RΩ | Rp | |
| 600 | 0.48 | 0.37 | 0.11 | 0.67 | 0.44 | 0.23 |
| 500 | 0.72 | 0.47 | 0.25 | 1.28 | 0.61 | 0.67 |
| 400 | 1.98 | 0.81 | 1.17 | 3.31 | 1.09 | 2.22 |
| 300 | 9.23 | 1.54 | 7.69 | 17.31 | 2.80 | 14.51 |
图6 PCMR在(a) H2和(b) NH3气氛下温度与Rp、RΩ以及Rtotal的阿伦尼乌斯曲线
Fig. 6 Arrhenius curves of temperature vs. Rp, RΩ and Rtotal of PCMR under (a) H2 and (b) NH3 environments
| [13] |
LI Y F, ZHANG W S, REN J, et al. Ammonia decomposition for carbon-free hydrogen production over Ni/Al-Ce catalysts: synergistic effect between Al and Ce. Fuel, 2024, 358: 130176.
DOI URL |
| [14] |
BUONOMENNA M G. Proton-conducting ceramic membranes for the production of hydrogen via decarbonized heat: overview and prospects. Hydrogen, 2023, 4(4): 807.
DOI URL |
| [15] |
WANG H N, WANG X B, MENG B, et al. Perovskite-based mixed protonic-electronic conducting membranes for hydrogen separation: recent status and advances. Journal of Industrial and Engineering Chemistry, 2018, 60: 297.
DOI URL |
| [16] |
LI N N, ZARKADOULAS A, KYRIAKOU V. Opportunities and challenges for direct electrification of chemical processes with protonic ceramic membrane reactors. Progress in Energy, 2024, 6(4): 043007.
DOI |
| [17] |
LI F R, DUAN G X, WANG Z G, et al. Highly efficient recovery of hydrogen from dilute H2-streams using BaCe0.7Zr0.1Y0.2O3-δ/ Ni-BaCe0.7Zr0.1Y0.2O3-δ dual-layer hollow fiber membrane. Separation and Purification Technology, 2022, 287: 120602.
DOI URL |
| [18] |
WANG Q J, LUO T, TONG Y C, et al. Large-area protonic ceramic cells for hydrogen purification. Separation and Purification Technology, 2022, 295: 121301.
DOI URL |
| [19] |
TONG Y C, WANG Y, CUI C S, et al. Preparation and characterization of symmetrical protonic ceramic fuel cells as electrochemical hydrogen pumps. Journal of Power Sources, 2020, 457: 228036.
DOI URL |
| [20] |
LIANG M Z, SONG Y F, XIONG B C, et al. In situ exsolved CoFeRu alloy decorated perovskite as an anode catalyst layer for high-performance direct-ammonia protonic ceramic fuel cells. Advanced Functional Materials, 2024, 34(48): 2408756.
DOI URL |
| [21] | 曹希文, 罗凌虹, 曾小军, 等. 固体氧化物燃料电池Ni基阳极抗积碳的研究进展. 陶瓷学报, 2024, 45(1): 72. |
| [22] | 蓝海洋, 陈星余, 张博, 等. 固体氧化物直接氨燃料电池阳极材料的研究进展. 陶瓷学报, 2023, 44(6): 1078. |
| [23] |
PENG C X, ZHAO B X, MENG X, et al. Effect of NiO addition on the sintering and electrochemical properties of BaCe0.55Zr0.35Y0.1O3-δ proton-conducting ceramic electrolyte. Membranes, 2024, 14(3): 61.
DOI URL |
| [24] |
DANILOV N A, STAROSTINA I A, STAROSTIN G N, et al. Fundamental understanding and applications of protonic Y- and Yb-coped Ba(Ce, Zr)O3 perovskites: state-of-the-art and perspectives. Advanced Energy Materials, 2023, 13(47): 2302175.
DOI URL |
| [25] |
YANG Y M, LU J C, ZHANG X Y, et al. Symmetry-induced modulation of proton conductivity in Y-doped Ba(Zr, Ce)O3: insights from Raman spectroscopy. Journal of Materials Chemistry A, 2024, 12(21): 12599.
DOI URL |
| [26] |
ZHANG J H, LU X T, MAO H Y, et al. Effect of sintering additives on sintering behavior and conductivity of BaZr0.1Ce0.7Y0.2O3-δ electrolytes. Journal of Inorganic Materials, 2025, 40(1): 84.
DOI URL |
| [27] |
ZHU D C, LIU Z Q, ZHU C J, et al. Construction of a novel BaZr0.1Ce0.7Y0.2O3-δ-SnO2 heterojunction composite electrolyte for advanced semiconductor ion fuel cells operating at lower temperature down to 350 ℃. Chemical Engineering Journal, 2025, 505: 159368.
DOI URL |
| [28] |
HOU J, GONG J Y, BI L. Advancing cathodic electrocatalysis via an in situ generated dense active interlayer based on CuO5 pyramid-structured Sm2Ba1.33Ce0.67Cu3O9. Journal of Materials Chemistry A, 2022, 10(30): 15949.
DOI URL |
| [29] |
HOU J, DONG K, MIAO L N, et al. Rationally structuring proton-conducting solid oxide fuel cell anode with Ni metal catalyst and porous skeleton. Ceramics International, 2020, 46(15): 24038.
DOI URL |
| [30] |
ZHANG G J, CHEN T, GUO Z Z, et al. A 10 × 10 cm2 protonic ceramic electrochemical hydrogen pump for efficient and durable hydrogen purification. Chemical Engineering Journal, 2024, 495: 153521.
DOI URL |
| [31] |
CHOI J, SHIN M, KIM B, et al. High-performance ceramic composite electrodes for electrochemical hydrogen pump using protonic ceramics. International Journal of Hydrogen Energy, 2017, 42(18): 13092.
DOI URL |
| [32] | MUSHTAQ U, WELZEL S, SHARMA R K, et al. Development of electrode-supported proton conducting solid oxide cells and their evaluation as electrochemical hydrogen pumps. ACS Applied Materials & Interfaces, 2022, 14(34): 38938. |
| [1] |
SADEQ A M, HOMOD R Z, HUSSEIN A K, et al. Hydrogen energy systems: technologies, trends, and future prospects. Science of the Total Environment, 2024, 939: 173622.
DOI URL |
| [2] |
YUE M L, LAMBERT H, PAHON E, et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 2021, 146: 111180.
DOI URL |
| [3] |
AGYEKUM E B, ODOI-YORKE F, ABBEY A A, et al. A review of the trends, evolution, and future research prospects of hydrogen fuel cells-a focus on vehicles. International Journal of Hydrogen Energy, 2024, 72: 918.
DOI URL |
| [4] |
LI N, ZHANG C, LI D, et al. Review of reactor systems for hydrogen production via ammonia decomposition. Chemical Engineering Journal, 2024, 495: 153125.
DOI URL |
| [5] |
ZAINAL N A, ZULKIFLI N W M, GULZAR M, et al. A review on the chemistry, production, and technological potential of bio-based lubricants. Renewable and Sustainable Energy Reviews, 2018, 82: 80.
DOI URL |
| [6] | LIANG D T, FENG C, XU L, et al. Promotion effects of different methods in COx-free hydrogen production from ammonia decomposition. Catalysis Science & Technology, 2023, 13(12): 3614. |
| [7] |
ZHANG X S, LIU Y T, WANG Y Y, et al. Self-assembled platinum-iridium alloy aerogels and their efficient electrocatalytic ammonia oxidation performance. Journal of Inorganic Materials, 2023, 38(5): 511.
DOI |
| [8] |
MUKHERJEE S, DEVAGUPTAPU S V, SVIRIPA A, et al. Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental, 2018, 226: 162.
DOI URL |
| [9] |
LIAN M L, SU J X, HUANG H Y, et al. Supported Ni catalysts from Ni-Mg-Al hydrotalcite-like compounds: preparation and catalytic performance for ammonia decomposition. Journal of Inorganic Materials, 2025, 40(1): 53.
DOI URL |
| [10] |
SUN S C, JIANG Q Q, ZHAO D Y, et al. Ammonia as hydrogen carrier: advances in ammonia decomposition catalysts for promising hydrogen production. Renewable and Sustainable Energy Reviews, 2022, 169: 112918.
DOI URL |
| [33] |
YUN J, XIONG G, KIM S, et al. Understanding direct-ammonia protonic ceramic fuel cells: high-performance in the absence of precious metal catalysts. ACS Energy Letters, 2024, 9(11): 5520.
DOI URL |
| [34] | ZHOU Y C, LIU E Z, CHEN Y, et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells. ACS Energy Letters, 2021, 6(4): 1511. |
| [11] |
CECHETTO V, DI FELICE L, MARTINEZ G R, et al. Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. International Journal of Hydrogen Energy, 2022, 47(49): 21220.
DOI URL |
| [12] |
SHEN M H, AI F J, MA H L, et al. Progress and prospects of reversible solid oxide fuel cell materials. iScience, 2021, 24(12): 103464.
DOI URL |
| [1] | 闫共芹, 王晨, 蓝春波, 洪雨昕, 叶维超, 付向辉. Al掺杂P2型Na0.8Ni0.33Mn0.67-xAlxO2钠离子电池正极材料的制备与电化学性能[J]. 无机材料学报, 2025, 40(9): 1005-1012. |
| [2] | 李汶金, 娄程广, 张帅, 苏兴华. 金属Cu和5YSZ陶瓷的“闪连”研究[J]. 无机材料学报, 2025, 40(9): 957-963. |
| [3] | 杨燕, 张发强, 马名生, 王墉哲, 欧阳琪, 刘志甫. 基于CuO-TiO2-Nb2O5复合氧化物烧结助剂的ZnAl2O4陶瓷低温烧结研究[J]. 无机材料学报, 2025, 40(6): 711-718. |
| [4] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
| [5] | 尹长志, 成名飞, 雷微程, 蔡弋炀, 宋小强, 付明, 吕文中, 雷文. Ga3+掺杂对SrAl2Si2O8陶瓷晶体结构及微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 704-710. |
| [6] | 陈莉波, 盛盈, 伍明, 宋季岭, 蹇建, 宋二红. Na和O元素共掺杂氮化碳高效光催化制氢[J]. 无机材料学报, 2025, 40(5): 552-562. |
| [7] | 万俊池, 杜路路, 张永上, 李琳, 刘建德, 张林森. Na4FexP4O12+x/C钠离子电池正极材料的结构演变及其电化学性能[J]. 无机材料学报, 2025, 40(5): 497-503. |
| [8] | 薛柯, 蔡长焜, 谢满意, 李舒婷, 安胜利. 固体氧化物燃料电池Pr1+xBa1-xFe2O5+δ阴极材料的制备及电化学性能研究[J]. 无机材料学报, 2025, 40(4): 363-371. |
| [9] | 张宇婷, 李晓斌, 刘尊义, 李宁, 赵鹬. 复合蛋黄壳型NiCo2V2O8@TiO2@NC材料用作锂离子电池负极研究[J]. 无机材料学报, 2025, 40(11): 1221-1228. |
| [10] | 连敏丽, 苏佳欣, 黄鸿杨, 嵇玉寅, 邓海帆, 张彤, 陈崇启, 李达林. Ni-Mg-Al类水滑石衍生镍基催化剂的制备及其氨分解性能[J]. 无机材料学报, 2025, 40(1): 53-60. |
| [11] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
| [12] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
| [13] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
| [14] | 柯鑫, 谢炳卿, 王忠, 张敬国, 王建伟, 李占荣, 贺会军, 汪礼敏. 第三代半导体互连材料与低温烧结纳米铜材的研究进展[J]. 无机材料学报, 2024, 39(1): 17-31. |
| [15] | 罗淑文, 马名生, 刘峰, 刘志甫. Ca-B-Si体系LTCC材料腐蚀行为及腐蚀机理[J]. 无机材料学报, 2023, 38(5): 553-560. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||