无机材料学报 ›› 2025, Vol. 40 ›› Issue (11): 1221-1228.DOI: 10.15541/jim20240545
收稿日期:2024-12-31
修回日期:2025-03-19
出版日期:2025-11-20
网络出版日期:2025-04-14
通讯作者:
赵 鹬, 教授. E-mail: yzhao@lut.edu.cn作者简介:张宇婷(1999-), 女, 硕士研究生. E-mail: 1252557015@qq.com
基金资助:
ZHANG Yuting(
), LI Xiaobin, LIU Zunyi, LI Ning, ZHAO Yu(
)
Received:2024-12-31
Revised:2025-03-19
Published:2025-11-20
Online:2025-04-14
Contact:
ZHAO Yu, professor. E-mail: yzhao@lut.edu.cnAbout author:ZHANG Yuting (1999-), female, Master candidate. E-mail: 1252557015@qq.com
Supported by:摘要:
过渡金属钒酸盐作为一种较有优势的锂离子电池负极材料, 目前存在着导电性差、充放电过程体积剧烈变化而造成循环稳定性差等瓶颈问题。本研究采用分步包覆策略制备了具有多级复合核壳结构的NiCo2V2O8@TiO2@NC材料以改善此缺陷。首先以水热合成及离子交换法制备出的蛋黄壳结构NiCo2V2O8纳米微球作为前驱体, 继而在其表面包覆坚固的TiO2层和氮掺杂碳(NC)网络结构, 成功制备出分级介孔纳米结构。特定的蛋黄壳纳米球结构可以为NiCo2V2O8提供丰富的Li+传输通道, 而进一步包覆TiO2层, 不仅增强了材料的稳定性和耐久性, 还为其提供了额外的电化学活性位点。同时, 引入氮掺杂碳网络结构, 不仅提升了有序多级核壳NiCo2V2O8@TiO2@NC材料的导电性, 还有助于增强电子的快速传输, 进一步优化了材料的电化学性能。在最优条件下制备的锂离子电池负极材料, 其电池的初始比容量达到1422.0 mAh∙g-1, 500次循环后比容量依然保持在1011.9 mAh∙g-1, 比容量保持率为71.2%, 显示出高比容量、良好的倍率性能和出色的循环稳定性, 使得该材料在能源存储器件中具有广阔的应用前景。
中图分类号:
张宇婷, 李晓斌, 刘尊义, 李宁, 赵鹬. 复合蛋黄壳型NiCo2V2O8@TiO2@NC材料用作锂离子电池负极研究[J]. 无机材料学报, 2025, 40(11): 1221-1228.
ZHANG Yuting, LI Xiaobin, LIU Zunyi, LI Ning, ZHAO Yu. Composite Yolk-shell NiCo2V2O8@TiO2@NC Material as Anode for Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2025, 40(11): 1221-1228.
图1 (a) NiCo2V2O8@TiO2@NC-0.2的XRD图谱; (b) NiCo2V2O8@TiO2-0.2和NiCo2V2O8@TiO2@NC-0.2的拉曼光谱图
Fig. 1 (a) XRD pattern of NiCo2V2O8@TiO2@NC-0.2; (b) Raman spectra of NiCo2V2O8@TiO2-0.2 and NiCo2V2O8@TiO2@NC-0.2
图3 (a) NiCo2V2O8、(b) NiCo2V2O8@TiO2-0.1、(c) NiCo2V2O8@TiO2-0.2和(d) NiCo2V2O8@TiO2-0.4的SEM照片
Fig. 3 SEM images of (a) NiCo2V2O8, (b) NiCo2V2O8@TiO2-0.1, (c) NiCo2V2O8@TiO2-0.2 and (d) NiCo2V2O8@TiO2-0.4
图4 NiCo2V2O8@TiO2@NC-0.2的(a) SEM、(b, c) TEM、(d) HRTEM照片以及(e) EDS元素分布图
Fig. 4 (a) SEM, (b, c) TEM, (d) HRTEM images, and (e) EDS mapping element distributions for NiCo2V2O8@TiO2@NC-0.2
图5 NiCo2V2O8@TiO2@NC-0.2 (a)在0.3 mV∙s-1下初始五个循环的CV曲线, (b)在0.2 A∙g-1电流密度下的恒电流充放电曲线
Fig. 5 (a) CV curves of initial five cycles at 0.3 mV∙s-1 and (b) charging-discharging curves at 0.2 A∙g-1 current density for NiCo2V2O8@TiO2@NC-0.2 Colorful figures are available on website
图S4 NiCo2V2O8@TiO2@NC-0.2、NiCo2V2O8@NC和NiCo2V2O8@TiO2-0.2电极在0.5 A∙g-1电流密度下的循环比容量
Fig. S4 Cycling capacities at 0.5 A∙g-1 current density for NiCo2V2O8@TiO2@NC-0.2, NiCo2V2O8@NC and NiCo2V2O8@TiO2-0.2
图S5 NiCo2V2O8@TiO2@NC-0.2、NiCo2V2O8@NC和NiCo2V2O8@TiO2-0.2电极在不同电流密度下的倍率性能
Fig. S5 Rate performances at different current densities for NiCo2V2O8@TiO2@NC-0.2, NiCo2V2O8@NC and NiCo2V2O8@TiO2-0.2
图S6 (a) NiCo2V2O8@TiO2@NC-0.2电极在不同扫描速率下的CV曲线、(b)特定峰值电流的lgI-lgv拟合直线、(c)不同扫描速率下赝电容的贡献比, 以及(d) 1.0 mV∙s-1扫速下的赝电容贡献
Fig. S6 (a) CV curves at different scan rates, (b) lgI-lgv plots for specific peak currents, (c) contribution ratios of pseudocapacitance at different scan rates, and (d) CV curve at a scan rate of 1.0 mV∙s-1 with the pseudocapacitance contribution in the purple area for NiCo2V2O8@TiO2@NC-0.2 electrode
| [1] | SANKAR S S, KARTHICK K, SANGEETHA K, et al. Annexation of nickel vanadate (Ni3V2O8) nanocubes on nanofibers: an excellent electrocatalyst for water oxidation. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4572. |
| [2] |
JING S, ZHAO C, ZHANG X, et al. Rational construction of self-standing layered polyhedral Co3O4/CoS2 heterostructure materials boosting superior lithium storage performance. Advanced Materials Interfaces, 2022, 9(26): 2201230.
DOI URL |
| [3] | LIU Y, SHI H, WU Z S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy & Environmental Science, 2023, 16(11): 4834. |
| [4] | GUO W H, FU D C, SONG H W, et al. Advanced V-based materials for multivalent-ion storage applications. Energy Materials, 2024, 4: 400026. |
| [5] |
XU X M, XIONG F Y, MENG J S, et al. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Advanced Functional Materials, 2020, 30: 1904398.
DOI URL |
| [6] |
HUANG J, LIU Q, LI P, et al. Regulating Ni-O-V bond in nickel doped vanadium catalysts for propane dehydrogenation. Applied Catalysis A: General, 2022, 644: 118819.
DOI URL |
| [7] |
MEN Y, LIU X, YANG F, et al. Carbon encapsulated hollow Co3O4 composites derived from reduced graphene oxide wrapped metal-organic frameworks with enhanced lithium storage and water oxidation properties. Inorganic Chemistry, 2018, 57(17): 10649.
DOI URL |
| [8] |
ARASI S E, RANJITHKUMAR R, DEVENDRAN P, et al. Electrochemical evaluation of binary Ni2V2O7 nanorods as pseudocapacitor electrode material. Ceramics International, 2020, 46(14): 22709.
DOI URL |
| [9] |
LAURO S N, BURROW J N, MULLINS C B. Restructuring the lithium-ion battery: a perspective on electrode architectures. eScience, 2023, 3(4): 100152.
DOI URL |
| [10] |
DONG Z, MENG C, LI Z, et al. Novel Co3O4@TiO2@CdS@Au double-shelled nanocage for high-efficient photocatalysis removal of U (VI): roles of spatial charges separation and photothermal effect. Journal of Hazardous Materials, 2023, 452: 131248.
DOI URL |
| [11] |
YUAN Y F, ZHAO W C, CHEN L, et al. CoO hierarchical mesoporous nanospheres@TiO2@C for high-performance lithium-ion storage. Applied Surface Science, 2021, 556: 149810.
DOI URL |
| [12] |
ZHENG H, YANG Y, LIU X, et al. Controllable synthesis of FeVO4@TiO2 nanostructures as anode for lithium ion battery. Journal of Nanoparticle Research, 2017, 19: 243.
DOI URL |
| [13] |
ZHANG C, ZHENG K, YE X, et al. Effects of nonmetallic heteroatoms doping on the catalytic performance of carbon materials. Chemical Engineering Science, 2025, 304: 120980.
DOI URL |
| [14] |
LI X, LIU Z, ZHANG Y, et al. NiCo2V2O8@NC spheres with mesoporous yolk-bilayer hierarchical structure for enhanced lithium storage. Langmuir, 2024, 40(29): 15161.
DOI URL |
| [15] | LU Y, NAI J, LOU X W. Formation of NiCo2V2O8 yolk-double shell spheres with enhanced lithium storage properties. Angewandte Chemie International Edition, 2018, 130(11): 2949. |
| [16] |
LIAO G B, WANG J S, CHONG Z, et al. Aluminum doped non-stoichiometric titanium dioxide as a negative electrode material for lithium-ion battery: in-operando XRD analysis. Journal of Alloys and Compounds, 2024, 1005: 175876.
DOI URL |
| [17] |
ZHAO D, SHAO Q, ZHANG Y, et al. N-Doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting. Nanoscale, 2018, 10(48): 22787.
DOI PMID |
| [18] |
KAKAZEY M, SERRANO M, VLASOVA M, et al. Evolution of morphology and defect states in mechanically processed ZnO+xMWCNTs nanosystems. Journal of Alloys and Compounds, 2018, 762: 605.
DOI URL |
| [19] |
DING J, JI D, YUE Y, et al. Amorphous materials for lithium‐ion and post-lithium-ion batteries. Small, 2024, 20(5): 2304270.
DOI URL |
| [20] |
SOUNDHARRAJAN V, SAMBANDAM B, SONG J, et al. Bitter gourd-shaped Ni3V2O8 anode developed by a one-pot metal- organic framework-combustion technique for advanced Li-ion batteries. Ceramics International, 2017, 43(16): 13224.
DOI URL |
| [21] |
CIFUENTES-CABEZAS M, GALINHA C F, CRESPO J G, et al. Nanofiltration of wastewaters from olive oil production: study of operating conditions and analysis of fouling by 2D fluorescence and FTIR spectroscopy. Chemical Engineering Journal, 2023, 454: 140025.
DOI URL |
| [22] |
IVANOV I V. Modeling of water adsorption isotherms on clinoptilolite. Russian Journal of Physical Chemistry A, 2024, 98(8): 1828.
DOI |
| [23] |
SOUNDHARRAJAN V, SAMBANDAM B, SONG J, et al. Facile green synthesis of a Co3V2O8 nanoparticle electrode for high energy lithium-ion battery applications. Journal of Colloid and Interface Science, 2017, 501: 133.
DOI URL |
| [24] |
ZHANG Q, SHI Q, LI H, et al. Hydrothermal synthesis and electrochemical properties of 3D Zn2V2O7 microsphere for alkaline rechargeable battery. Journal of Power Sources, 2019, 439: 227087.
DOI URL |
| [25] | SOUNDHARRAJAN V, SAMBANDAM B, SONG J, et al. Co3V2O8 sponge network morphology derived from metal-organic framework as an excellent lithium storage anode material. ACS Applied Materials & Interfaces, 2016, 8(13): 8546. |
| [26] |
LEI D, LIU C, DONG C, et al. Reduced graphene oxide/MXene/ FeCoC nanocomposite aerogels derived from metal-organic frameworks toward efficient microwave absorption. ACS Applied Nano Materials, 2024, 7(21): 25259.
DOI URL |
| [27] |
WANG Y H, LI L, SHI J, et al. Oxygen defect engineering promotes synergy between adsorbate evolution and single lattice oxygen mechanisms of OER in transition metal-based (oxy) hydroxide. Advanced Science, 2023, 10(32): 2303321.
DOI URL |
| [28] |
LIU J, ZHANG P, YU D, et al. Hierarchical Co2VO4 yolk-shell microspheres confined by N-doped carbon layer as anode for high-rate lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 882: 115027.
DOI URL |
| [29] |
ZHOU X, CHENG F, YANG J, et al. N-doped carbon encapsulated MnO nanoparticles for enhanced lithium storage. Materials Letters, 2019, 234: 335.
DOI URL |
| [30] |
NAKADA A, MATSUMOTO T, CHANG H C. Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coordination Chemistry Reviews, 2022, 473: 214804.
DOI URL |
| [31] |
ZHAO L, SUN Y, ZHAO Q, et al. Dual-type confinement strategy: improving the stability of organic composite cathodes for lithium-ion batteries with longer lifespan. Chemical Engineering Journal, 2024, 490: 151547.
DOI URL |
| [32] |
DING Y, LIU B, ZOU J, et al. α-Fe2O3/SnO2 heterostructure composites: a high stability anode for lithium-ion battery. Materials Research Bulletin, 2018, 106: 7.
DOI URL |
| [33] |
HE Z, WEI Y, SONG Y, et al. Novel design of Sn4P3@NxC electrodes and their electrochemical properties. Journal of Alloys and Compounds, 2024, 1005: 175940.
DOI URL |
| [34] |
SAMBANDAM B, SOUNDHARRAJAN V, SONG J, et al. Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries. Chemical Engineering Journal, 2017, 328: 454.
DOI URL |
| [35] |
LIU Z, HE D, WANG B, et al. A low-voltage layered Na2TiGeO5 anode for lithium-ion battery. Small, 2022, 18(14): 2107608.
DOI URL |
| [36] |
AMIRI M, DAVARANI S S H, KAVERLAVANI S K, et al. Construction of hierarchical nanoporous CuCo2V2O8 hollow spheres as a novel electrode material for high-performance asymmetric supercapacitors. Applied Surface Science, 2020, 527: 146855.
DOI URL |
| [37] | XU S, HESSEL C M, REN H, et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy & Environmental Science, 2014, 7(2): 632. |
| [38] | WU J. Study of prelithiated silicon as anode in lithium-ion cells. ECS Meeting Abstracts, MA2014-01(2): 196. |
| [39] | ZHANG X, QIU Y, CHENG F, et al. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LIBs by Co and Ti dual modification. ACS Applied Materials & Interfaces, 2021, 13(15): 17707. |
| [40] |
LIU Y, TAO X, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science, 2022, 375(6582): 739.
DOI PMID |
| [41] |
ZHI Z, WANG J, ZHOU J, et al. Oxygen vacancies are generated in the inner layer of the core-shell structure by in-situ electrochemical activation to promote electrochemical energy storage. Journal of Energy Storage, 2024, 100: 113528.
DOI URL |
| [42] |
CHEN G Z. Linear and non-linear pseudocapacitances with or without diffusion control. Progress in Natural Science: Materials International, 2021, 31(6): 792.
DOI URL |
| [43] |
CRUZ-MANZO S, GREENWOOD P. An impedance model based on a transmission line circuit and a frequency dispersion Warburg component for the study of EIS in Li-ion batteries. Journal of Electroanalytical Chemistry, 2020, 871: 114305.
DOI URL |
| [44] |
YANG J P, ZHOU T F, ZHU R, et al. Highly ordered dual porosity mesoporous cobalt oxide for sodium-ion batteries. Advanced Materials Interfaces, 2016, 3(3): 1500464.
DOI URL |
| [1] | 闫共芹, 王晨, 蓝春波, 洪雨昕, 叶维超, 付向辉. Al掺杂P2型Na0.8Ni0.33Mn0.67-xAlxO2钠离子电池正极材料的制备与电化学性能[J]. 无机材料学报, 2025, 40(9): 1005-1012. |
| [2] | 文伸豪, 彭德招, 林喆与, 郭霞, 黄培鑫, 章志珍. 基于LLZTO电解质的固态锂金属电池负极界面调控[J]. 无机材料学报, 2025, 40(9): 1013-1021. |
| [3] | 谭博文, 耿双龙, 张锴, 郑百林. 硅电极组分梯度设计抑制力-化学耦合劣化[J]. 无机材料学报, 2025, 40(7): 772-780. |
| [4] | 万俊池, 杜路路, 张永上, 李琳, 刘建德, 张林森. Na4FexP4O12+x/C钠离子电池正极材料的结构演变及其电化学性能[J]. 无机材料学报, 2025, 40(5): 497-503. |
| [5] | 薛柯, 蔡长焜, 谢满意, 李舒婷, 安胜利. 固体氧化物燃料电池Pr1+xBa1-xFe2O5+δ阴极材料的制备及电化学性能研究[J]. 无机材料学报, 2025, 40(4): 363-371. |
| [6] | 唐阳, 刘立敏, 周晓亮, 张搏, 蒋星洲, 贾浩义, 罗延麟庆. 质子陶瓷膜反应器的制备及低温氨分解性能研究[J]. 无机材料学报, 2025, 40(11): 1277-1284. |
| [7] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
| [8] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
| [9] | 张婷婷, 王方园, 刘长友, 张国荣, 吕佳辉, 宋宇晨, 介万奇. 水热-烧结法制备Cr2+:ZnSe/ZnSe核壳结构纳米孪晶[J]. 无机材料学报, 2024, 39(4): 409-415. |
| [10] | 程节, 周月, 罗薪涛, 高美婷, 骆思妃, 蔡丹敏, 吴雪垠, 朱立才, 袁中直. 蛋黄壳结构FeF3·0.33H2O@N掺杂碳纳米笼正极材料的构筑及其电化学性能[J]. 无机材料学报, 2024, 39(3): 299-305. |
| [11] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
| [12] | 岳全鑫, 郭瑞华, 王瑞芬, 安胜利, 张国芳, 关丽丽. 3D核壳结构NiMoO4@CoFe-LDH纳米棒的高效析氧及全解水性能研究[J]. 无机材料学报, 2024, 39(11): 1254-1264. |
| [13] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
| [14] | 苏楠, 邱介山, 王治宇. 高容量氟掺杂碳包覆纳米硅负极材料: 气相氟化法制备及其储锂性能[J]. 无机材料学报, 2023, 38(8): 947-953. |
| [15] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||