无机材料学报 ›› 2025, Vol. 40 ›› Issue (11): 1221-1228.DOI: 10.15541/jim20240545

• 研究论文 • 上一篇    下一篇

复合蛋黄壳型NiCo2V2O8@TiO2@NC材料用作锂离子电池负极研究

张宇婷(), 李晓斌, 刘尊义, 李宁, 赵鹬()   

  1. 兰州理工大学 石油化工学院, 兰州 730050
  • 收稿日期:2024-12-31 修回日期:2025-03-19 出版日期:2025-11-20 网络出版日期:2025-04-14
  • 通讯作者: 赵 鹬, 教授. E-mail: yzhao@lut.edu.cn
  • 作者简介:张宇婷(1999-), 女, 硕士研究生. E-mail: 1252557015@qq.com
  • 基金资助:
    兰州市科技计划项目(2023-3-68)

Composite Yolk-shell NiCo2V2O8@TiO2@NC Material as Anode for Lithium-ion Batteries

ZHANG Yuting(), LI Xiaobin, LIU Zunyi, LI Ning, ZHAO Yu()   

  1. School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2024-12-31 Revised:2025-03-19 Published:2025-11-20 Online:2025-04-14
  • Contact: ZHAO Yu, professor. E-mail: yzhao@lut.edu.cn
  • About author:ZHANG Yuting (1999-), female, Master candidate. E-mail: 1252557015@qq.com
  • Supported by:
    Lanzhou Science and Technology Plan Project(2023-3-68)

摘要:

过渡金属钒酸盐作为一种较有优势的锂离子电池负极材料, 目前存在着导电性差、充放电过程体积剧烈变化而造成循环稳定性差等瓶颈问题。本研究采用分步包覆策略制备了具有多级复合核壳结构的NiCo2V2O8@TiO2@NC材料以改善此缺陷。首先以水热合成及离子交换法制备出的蛋黄壳结构NiCo2V2O8纳米微球作为前驱体, 继而在其表面包覆坚固的TiO2层和氮掺杂碳(NC)网络结构, 成功制备出分级介孔纳米结构。特定的蛋黄壳纳米球结构可以为NiCo2V2O8提供丰富的Li+传输通道, 而进一步包覆TiO2层, 不仅增强了材料的稳定性和耐久性, 还为其提供了额外的电化学活性位点。同时, 引入氮掺杂碳网络结构, 不仅提升了有序多级核壳NiCo2V2O8@TiO2@NC材料的导电性, 还有助于增强电子的快速传输, 进一步优化了材料的电化学性能。在最优条件下制备的锂离子电池负极材料, 其电池的初始比容量达到1422.0 mAh∙g-1, 500次循环后比容量依然保持在1011.9 mAh∙g-1, 比容量保持率为71.2%, 显示出高比容量、良好的倍率性能和出色的循环稳定性, 使得该材料在能源存储器件中具有广阔的应用前景。

关键词: 核壳结构, 过渡金属钒酸盐, 锂离子电池, 电化学性能

Abstract:

Transition metal vanadates, as an advantageous anode material for lithium-ion batteries, currently have bottlenecks such as unsatisfied conductivity and cycle stability caused by drastic volume changes during charging and discharging. In this study, NiCo2V2O8@TiO2@NC material with a multi-level composite core-shell structure was prepared using a step-by-step coating strategy to improve this defect. Initially, yolk-shell structured NiCo2V2O8 nanospheres were synthesized as the precursor through hydrothermal synthesis and ion exchange methods. Subsequently, a robust TiO2 layer and a nitrogen-doped carbon (NC) network structure were coated on the surface, resulting in formation of a hierarchical mesoporous nanostructure. The specific yolk-shell nanosphere structure provides abundant channels for Li+ transport in NiCo2V2O8, a promising electrochemical active material. Further coating with a TiO2 layer not only enhances the stability and durability of the material, but also offers additional electrochemical active sites. Moreover, introduction of the nitrogen-doped carbon network structure not only improves conductivity of the ordered multi-level core-shell NiCo2V2O8@TiO2@NC material but also facilitates rapid electron transport, further optimizing its electrochemical performance. When lithium-ion battery anode materials were prepared under optimal conditions, the obtained cell exhibited an initial specific capacity of 1422.0 mAh∙g-1, which remained 1011.9 mAh∙g-1 after 500 cycles, corresponding to a specific capacity retention rate of 71.2%. This material demonstrates high specific capacity, good rate performance, and excellent cycle stability, displaying promising prospective for a wide range of applications in energy storage devices.

Key words: core-shell structure, transition metal oxide, lithium-ion battery, electrochemical performance

中图分类号: