韦连金, 齐志杰, 汪信, 朱俊武, 付永胜
收稿日期:
2025-03-31
修回日期:
2025-07-10
作者简介:
韦连金(2003-), 男, 博士研究生. E-mail: 3259728845@qq.com
基金资助:
WEI Lianjin, QI Zhijie, WANG Xin, ZHU Junwu, FU Yongsheng
Received:
2025-03-31
Revised:
2025-07-10
About author:
WEI Lianjin, male, PhD candidate. E-mail: 3259728845@qq.com
Supported by:
摘要: 氧还原反应(ORR)作为燃料电池和金属空气电池等清洁能源装置的关键阴极反应,反应动力学缓慢,使其实际应用受到了严重制约。虽然铂(Pt)基催化剂具有出色的ORR活性,但其价格昂贵、储量稀缺、稳定性和耐受性差,极大地阻碍了商业化的进程。因此,开发高效、低成本的新型ORR催化剂成为当前研究的重点。纳米金刚石作为新兴碳基材料具有成本低,官能团修饰可控,表面能高(>1000 mJ·m-2)和独特电子结构,在ORR催化中极具潜力。本文综述了纳米金刚石催化剂的最新研究进展,首先介绍了爆轰法、化学气相沉积法、脉冲激光烧蚀法、高温高压法等制备方法,随后总结杂原子掺杂、表面功能化、材料复合及形貌调控等改性策略,并分析活性中心形成机制与反应路径调控规律,涵盖不同改性策略对催化性能的影响及相关性能数据对比。最后探讨了当前纳米金刚石催化剂在催化机理、合成工艺、表征技术及设计方法等方面面临的挑战,并展望了未来发展方向,为研发新型碳基ORR催化剂提供了参考。
中图分类号:
韦连金, 齐志杰, 汪信, 朱俊武, 付永胜. 纳米金刚石改性及其在电催化氧还原反应中的应用[J]. 无机材料学报, DOI: 10.15541/jim20250135.
WEI Lianjin, QI Zhijie, WANG Xin, ZHU Junwu, FU Yongsheng. Modification of Nanodiamond and Its Application in Electrocatalytic Oxygen Reduction Reaction[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250135.
[1] WAN X, LIU X, LI Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2(3): 259. [2] ANSON C W, STAHL S S.Processes for electrochemical production of electrolyte-free hydrogen peroxide.Joule, 2019, 3(12): 2889. [3] SUN W, WANG F, ZHANG B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science, 2021, 371(6524): 46. [4] SHAO M, CHANG Q, DODELET J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction. Chemical Reviews, 2016, 116(6): 3594. [5] HUANG X, WANG Y, LI W, et al. Noble metal-free catalysts for oxygen reduction reaction. Science China Chemistry, 2017, 60(12): 1494. [6] PAN T, LIU H, REN G, et al. Metal-free porous nitrogen-doped carbon nanotubes for enhanced oxygen reduction and evolution reactions. Science Bulletin, 2016, 61(11): 889. [7] HU C, PAUL R, DAI Q, et al. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chemical Society Reviews, 2021, 50(21): 11785. [8] LIU X, DAI L.Carbon-based metal-free catalysts.Nature Reviews Materials, 2016, 1(11): 16064. [9] LAM E, LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals.ACS Catalysis, 2014, 4(10): 3393. [10] DENG D, YU L, CHEN X, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie International Edition, 2013, 52(1): 371. [11] ABIDA B, CHIRCHI L, BARANTON S, et al. Preparation and characterization of Pt/TiO2 nanotubes catalyst for methanol electro-oxidation. Applied Catalysis B: Environmental, 2011, 106(3): 609. [12] LIN Y, SUN X, SU D S, et al. Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chemical Society Reviews, 2018, 47(22): 8438. [13] GAO X W, ZHAO Z W, HE Y, et al. Nanodiamond: a promising metal-free nanoscale material in photocatalysis and electrocatalysis. Rare Metals, 2024, 43(8): 3501. [14] KOREPANOV V I, HAMAGUCHI H O, OSAWA E, et al. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon, 2017, 121: 322. [15] FANG Y X, WANG X C.Metal-free boron-containing heterogeneous catalysts.Angewandte Chemie International Edition, 2017, 56(49): 15506. [16] DUAN X, AO Z, ZHANG H, et al. Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: core-shell layer dependence. Applied Catalysis B: Environmental, 2018, 222: 176. [17] GRAYDON O.Sensitive nanodiamonds.Nature Photonics, 2019, 13(7): 438. [18] PIñA-SALAZAR E Z, KUKOBAT R, FUTAMURA R, et al. Water-selective adsorption sites on detonation nanodiamonds. Carbon, 2018, 139: 853. [19] KARAMI P, SALKHI KHASRAGHI S, HASHEMI M, et al. Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Advances in Colloid and Interface Science, 2019, 269: 122. [20] ZHANG Y, CUI Z, KONG H, et al. One-shot immunomodulatory nanodiamond agents for cancer immunotherapy. Advanced Materials, 2016, 28(14): 2699. [21] LIN Z, XIAO J, LI L, et al. Nanodiamonds: nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution. Advanced Energy Materials, 2016, 6(4): 1501865. [22] VLASOV I I, SHIRYAEV A A, RENDLER T, et al. Molecular-sized fluorescent nanodiamonds. Nature Nanotechnology, 2014, 9(1): 54. [23] BARBIERO M, CASTELLETTO S, GAN X, et al. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light: Science & Applications, 2017, 6(11): e17085. [24] LAZOVIC J, GOERING E, WILD A M, et al. Nanodiamond-enhanced magnetic resonance imaging. Advanced Materials, 2024, 36(11): 2470085. [25] HUANG G, GHALEI B, POURNAGHSHBAND ISFAHANI A, et al. Overcoming humidity-induced swelling of graphene oxide-based hydrogen membranes using charge-compensating nanodiamonds. Nature Energy, 2021, 6(12): 1176. [26] ZHANG X Q, LAM R, XU X, et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Advanced Materials, 2011, 23(41): 4770. [27] DUAN X, TIAN W, ZHANG H, et al. sp2/sp3 framework from diamond nanocrystals: a key bridge of carbonaceous structure to carbocatalysis. ACS Catalysis, 2019, 9(8): 7494. [28] KUMAR S, NEHRA M, KEDIA D, et al. Nanodiamonds: emerging face of future nanotechnology. Carbon, 2019, 143: 678. [29] BAGGE-HANSEN M, BASTEA S, HAMMONS J A, et al. Detonation synthesis of carbon nano-onions via liquid carbon condensation. Nature Communications, 2019, 10(1): 3819. [30] WHITLOW J, PACELLI S, PAUL A.Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions.Journal of Controlled Release, 2017, 261: 62. [31] BERNAT-QUESADA F, VALLÉS-GARCÍA C, MONTERO-LANZUELA E, et al. Hybrid sp2/sp3 nanodiamonds as heterogeneous metal-free ozonation catalysts in water. Applied Catalysis B: Environmental, 2021, 299: 120673. [32] DANILENKO V V.On the history of the discovery of nanodiamond synthesis.Physics of the Solid State, 2004, 46(4): 595. [33] DOLMATOV V Y.The influence of detonation synthesis conditions on the yield of condensed carbon and detonation nanodiamond through the example of using TNT-RDX explosive mixture.Journal of Superhard Materials, 2018, 40(4): 290. [34] MOCHALIN V N, SHENDEROVA O, HO D, et al. The properties and applications of nanodiamonds. Nature Nanotechnology, 2012, 7(1): 11. [35] GUNAWAN M A, MONCEA O, POINSOT D, et al. Nanodiamond-palladium core-shell organohybrid synthesis: a mild vapor-phase procedure enabling nanolayering metal onto functionalized sp3-Carbon. Advanced Functional Materials, 2018, 28(13): 1705786. [36] BASSO L, CAZZANELLI M, ORLANDI M, et al.: Nanodiamonds: synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Applied Sciences, 2020, 10(12): 4094. [37] EMELYANOV A A, PINAEV V A, PLOTNIKOV M Y, et al. Effect of methane flow rate on gas-jet MPCVD diamond synthesis. Journal of Physics D: Applied Physics, 2022, 55(20): 205202. [38] TRUSHEIM M E, LI L, LARAOUI A, et al. Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. Nano Letters, 2014, 14(1): 32. [39] TZENG Y K, ZHANG J L, LU H, et al. Vertical-substrate MPCVD epitaxial nanodiamond growth. Nano Letters, 2017, 17(3): 1489. [40] YOGESH G K, SHUKLA S, SASTIKUMAR D, et al. Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: a review. Applied Physics A, 2021, 127(11): 810. [41] 郑腊梅, 吕豫文, 唐少雄, 等. 激光法制备超细纳米金刚石的相变机理. 激光技术, 2016, 40(1): 25. [42] YANG G W, WANG J B, LIU Q X.Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching.Journal of Physics: Condensed Matter, 1998, 10(35): 7923. [43] GORRINI F, CAZZANELLI M, BAZZANELLA N, et al. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Scientific Reports, 2016, 6(1): 35244. [44] BORUAH A, SAIKIA B K.Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds.Journal of Fluorescence, 2022, 32(3): 863. [45] GUO Z, GUO B, ZHANG J, et al. CVD diamond processing tools: a review. Journal of Advanced Research, 2025, 74: 333 . [46] CRANE M J, PETRONE A, BECK R A,#magtechI#et al. High-pressure, high-temperature molecular doping of nanodiamond. Science Advances, 2019, 5(5): eaau6073. [47] ELDEMRDASH S, THALASSINOS G, ALZAHRANI A, et al. Fluorescent HPHT nanodiamonds have disk- and rod-like shapes. Carbon, 2023, 206: 268. [48] ZHANG Y, RHEE K Y, HUI D, et al. A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Composites Part B: Engineering, 2018, 143: 19. [49] EKIMOV E A, SHIRYAEV A A, SIDOROV V A, et al. Synthesis and properties of nanodiamonds produced by HPHT carbonization of 1-fluoroadamantane. Diamond and Related Materials, 2023, 136: 109907. [50] SHEN Y, SU S, ZHAO W, et al. Sub-4 nm nanodiamonds from graphene-oxide and nitrated polycyclic aromatic hydrocarbons at 423 K. ACS Nano, 2021, 15(11): 17392. [51] FENG Y, DAVIDSON D J, SUN W, et al. Formation of nanodiamonds during pyrolysis of butanosolv lignin. ACS Nano, 2024, 18(36): 24803. [52] YANG X, ZENG Y, ALNOUSH W, et al. Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Advanced Materials, 2022, 34(23): 2107954. [53] DING Y, ZHOU W, XIE L, et al. Pulsed electrocatalysis enables an efficient 2-electron oxygen reduction reaction for H2O2 production. Journal of Materials Chemistry A, 2021, 9(29): 15948. [54] YAN M, YANG H, GONG Z, et al. Sulfur-tuned main-group Sb-N-C catalysts for selective 2-electron and 4-electron oxygen reduction. Advanced Materials, 2024, 36(27): 2402963. [55] ALLENDORF M D.Oxygen reduction reaction: a framework for success.Nature Energy, 2016, 1(5): 16058. [56] LUO E, YANG T, LIANG J, et al. Selective oxygen electroreduction to hydrogen peroxide in acidic media: the superiority of single-atom catalysts. Nano Research, 2024, 17(6): 4668. [57] DEY S, MONDAL B, CHATTERJEE S, et al. Molecular electrocatalysts for the oxygen reduction reaction. Nature Reviews Chemistry, 2017, 1(12): 0098. [58] LIU Y, TZENG Y-K, LIN D, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule, 2018, 2(8): 1595. [59] WANG H, TZENG Y K, JI Y, et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nature Nanotechnology, 2020, 15(2): 131. [60] XING X, LIU R, ANJASS M, et al. Bimetallic manganese-vanadium functionalized N,S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Applied Catalysis B: Environmental, 2020, 277: 119195. [61] BHARDWAJ K, PARVIS F, WANG Y, et al. Effect of surface oxygen on the wettability and electrochemical properties of boron-doped nanocrystalline diamond electrodes in room-temperature ionic liquids. Langmuir, 2020, 36(21): 5717. [62] LIU Y, ZHANG Y, CHENG K, et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond. Angewandte Chemie International Edition, 2017, 56(49): 15607. [63] WU K H, LIU Y, LUO J, et al. The Coulombic nature of active nitrogen sites in n-doped nanodiamond revealed in situ by ionic surfactants. ACS Catalysis, 2017, 7(5): 3295. [64] LU M, LIU X, JING C, et al. Efficient electrochemical ozone and hydrogen peroxide production by synergistic effect of atomically dispersed Pt, boron and nitrogen doped 2D diamonds. Advanced Functional Materials, 2025, 35(2): 2412170. [65] LIU X, WANG Y, DONG L, et al. One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2016, 194: 161. [66] PRAUS P.On electronegativity of graphitic carbon nitride.Carbon, 2021, 172: 729. [67] HUANG Y K, JENA A, CHEN Y T, et al. Nanosized-Fe3PtN supported on nitrogen-doped carbon as electro-catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42(24): 15761. [68] CHOI E Y, KIM C K.Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction.Scientific Reports, 2017, 7(1): 4178. [69] DONG L, ZANG J, SU J, et al. Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 174: 1017. [70] LIN Y, ZHU Y, ZHANG B, et al. Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. Journal of Materials Chemistry A, 2015, 3(43): 21805. [71] SUN X, XU J, DING Y, et al. The effect of different phosphorus chemical states on an onion-like carbon surface for the oxygen reduction reaction. ChemSusChem, 2015, 8(17): 2872. [72] WU Y, ZANG J, DONG L, et al. High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media. Journal of Power Sources, 2016, 305: 64. [73] WANG Y, SU J, ZHU G, et al. Fe and N co-doped graphene coated nanodiamond/Fe3C as highly active and stable catalyst for oxygen reduction reaction. Diamond and Related Materials, 2023, 136: 109905. [74] HUANG F, PENG M, LIU H, et al. Atomically dispersed metals on nanodiamond-derived hybrid materials for heterogeneous catalysis. Accounts of Materials Research, 2023, 4(3): 223. [75] MAZA W A, BRESLIN V M, FEYGELSON T I, et al. Degradation of perfluorooctanesulfonate (PFOS) by sub-bandgap irradiation of hydrogen-terminated nanodiamond. Applied Catalysis B: Environmental, 2023, 325: 122306. [76] DONG L, ZANG J, WANG Y, et al. Graphitized nanodiamond as highly efficient support of electrocatalysts for oxygen reduction reaction. Journal of The Electrochemical Society, 2014, 161(3): F185. [77] KANNARI N, ITAKURA T, OZAKI J I.Electrochemical oxygen reduction activity of intermediate onion-like carbon produced by the thermal transformation of nanodiamond.Carbon, 2015, 87: 415. [78] JANG D M, IM H S, BACK S H, et al. Laser-induced graphitization of colloidal nanodiamonds for excellent oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16(6): 2411. [79] LIU J, ZHANG M, TANG L, et al. Surface hybrid engineering of nanodiamonds for boosting electrocatalytic hydrogen peroxide production with high efficiency and stability. Journal of Energy Chemistry, 2025, doi: 10.1016/j.jechem.2025.04.026. [80] MERZ V, LENHART J, VONHAUSEN Y, et al. Zwitterion-functionalized detonation nanodiamond with superior protein repulsion and colloidal stability in physiological media. Small, 2019, 15(48): 1901551. [81] LU J.Atomic lego catalysts synthesized by atomic layer deposition.Accounts of Materials Research, 2022, 3(3): 358. [82] WANG S, JI X, AO Y, et al. Vertically aligned N-doped diamond/graphite hybrid nanosheets epitaxially grown on B-doped diamond films as electrocatalysts for oxygen reduction reaction in an alkaline medium. ACS Applied Materials & Interfaces, 2018, 10(35): 29866. [83] ALLAH A E, EL-DEEB M M, FARGHALI A A, et al. Growth of polyoxomolybdate with a porous pyramidal structure on carbon xerogel nanodiamond as an efficient electro-catalyst for oxygen reduction reaction. RSC Advances, 2023, 13(12): 8090. [84] MOSTAFA E, KHEDR M H, ABDELWAHAB A.2D WS2 and MoS2 functionalized nickel oxide/nanodiamond supported carbon electrocatalysts for oxygen reduction reaction.Diamond and Related Materials, 2023, 139: 110386. [85] CHOI E Y, LEE D, KIM J, et al. Enhanced electrocatalytic activity of N-doped nano-onion/gold nanorod nanocomposites for the oxygen reduction reaction. Electrochimica Acta, 2022, 405: 139816. [86] LU M, LIU D, ZHANG C, et al. DFT calculations and experiments of oxidation resistance research on B, N, and Si multi-doped diamond films. Applied Surface Science, 2023, 612: 155865. [87] SOLANO J R, BAÑOS A T, DURÁN Á M, et al. DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. Journal of Molecular Modeling, 2017, 23(10): 292. [88] BOGDANOWICZ R, FICEK M, MALINOWSKA N, et al. Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes. Journal of Electroanalytical Chemistry, 2020, 862: 114016. [89] STURSA J, HAVLIK J, PETRAKOVA V, et al. Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. Carbon, 2016, 96: 812. [90] BASSO L, BAZZANELLA N, CAZZANELLI M, et al. On the route towards a facile fluorescent nanodiamonds laser-synthesis. Carbon, 2019, 153: 148. [91] LIU Y, CHEN S, QUAN X, et al. Boron and nitrogen codoped nanodiamond as an efficient metal-free catalyst for oxygen reduction reaction. The Journal of Physical Chemistry C, 2013, 117(29): 14992. [92] SUO N, HUANG H, WU A, et al. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution. Applied Surface Science, 2018, 439: 329. [93] ZHANG C, HUANG N, ZHAI Z, et al. Nitrogen-doped carbon nanowalls/diamond films as efficient electrocatalysts toward oxygen reduction reaction. Nanotechnology, 2022, 33(1): 015401. [94] COSTA F J R, DE ALMEIDA J S. Theoretical investigation of superconductivity in diamond: effects of doping and pressure.Journal of Applied Physics, 2021, 129(4). [95] RAMOS E, SANSORES L E, MAR N, et al. Diamondoids in octahedral iron complexes: a DFT study. Computational and Theoretical Chemistry, 2016, 1078: 30. |
[1] | 肖晓琳, 王玉祥, 谷佩洋, 朱圳荣, 孙勇. 二维无机材料调控病损皮肤组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 860-870. |
[2] | 马景阁, 吴成铁. 无机生物材料用于毛囊和毛发再生的研究[J]. 无机材料学报, 2025, 40(8): 901-910. |
[3] | 张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 849-859. |
[4] | 艾敏慧, 雷波. 微纳米生物活性玻璃: 功能化设计与血管化皮肤再生[J]. 无机材料学报, 2025, 40(8): 921-932. |
[5] | 王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, 2025, 40(8): 911-920. |
[6] | 马文平, 韩雅卉, 吴成铁, 吕宏旭. 无机活性材料在类器官研究领域的应用[J]. 无机材料学报, 2025, 40(8): 888-900. |
[7] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
[8] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[9] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[10] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[11] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[12] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[13] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[14] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[15] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||