无机材料学报 ›› 2026, Vol. 41 ›› Issue (2): 177-185.DOI: 10.15541/jim20250097 CSTR: 32189.14.jim20250097
收稿日期:2025-03-07
修回日期:2025-08-13
出版日期:2025-08-26
网络出版日期:2025-08-26
作者简介:朱建华(1978-), 男, 副教授. E-mail: zjianhua@ahut.edu.cn
基金资助:
ZHU Jianhua1,2(
), YANG Xin1, RU Lingjie1
Received:2025-03-07
Revised:2025-08-13
Published:2025-08-26
Online:2025-08-26
About author:ZHU Jianhua (1978-), male, associate professor. E-mail: zjianhua@ahut.edu.cn
Supported by:摘要:
二氧化钛(TiO2)作为一种典型的光催化材料, 因其优异的化学稳定性、无毒性和低成本等优势, 在环境治理和能源转换领域得到了广泛应用。然而, 较宽的带隙结构导致其只能吸收紫外光, 而且块体材料中光生电子-空穴对的严重复合制约了量子效率。本研究采用水热法构筑了一种新型2D/2D耦合的ZnIn2S4(ZIS)@TiO2复合材料。该异质结构由超薄TiO2纳米笼与ZIS纳米片复合而成, 具有独特的中空核壳形貌。复合20 mg TiO2纳米笼的ZIS-T20催化剂在400~720 nm宽波长范围内展现出显著增强的光吸收能力。在内建电场的作用下, 光生电子无法从ZIS的导带(CB)向TiO2的CB迁移, 而空穴从ZIS的价带(VB)转移至TiO2的VB却不受阻碍, 这种空间分离效应使得ZIS中保留了具有较高还原电位的电子, 克服了传统I型异质结还原电势降低的固有缺陷。在光催化CO2还原(PCR)性能测试中, ZIS@TiO2的催化性能得到显著提升, CO和CH4的生成速率分别达到58.87和12.03 μmol·g-1·h-1, 其中CO选择性高达83.03%, CO的生成速率较纯ZIS和TiO2分别提高了6.15倍和1.96倍。该工作不仅为设计高效2D/2D异质结光催化剂提供了新思路, 也为深入理解界面电荷转移机制提供了重要参考。
中图分类号:
朱建华, 杨鑫, 茹凌杰. 2D/2D耦合构建ZnIn2S4/TiO2异质结及其增强的光催化还原CO2性能[J]. 无机材料学报, 2026, 41(2): 177-185.
ZHU Jianhua, YANG Xin, RU Lingjie. 2D/2D Coupled ZnIn2S4/TiO2 Heterojunction and Its Enhanced Photocatalytic Reduction of CO2[J]. Journal of Inorganic Materials, 2026, 41(2): 177-185.
图1 材料的形貌结构
Fig. 1 Morphologies and microstructures of materials (a) SEM and (b) TEM images of 125-Tyr; (c) SEM and (d) TEM images of ZIS; (e) SEM, (f) TEM and (g) HRTEM images of ZIS-T20; (h) Line scan of ZIS-T20; (i-m) Distributions of elements for ZIS-T20. Colorful figures are available on website
图2 材料的XRD图谱(a)和FT-IR光谱图(b)
Fig. 2 (a) XRD patterns and (b) FT-IR spectra of materials Inset in (b) indicates the local magnification of ZIS. Colorful figures are available on website
图3 材料的物化性能
Fig. 3 Physical and chemical properties of materials (a) N2 adsorption-desorption curves with inset showing the corresponding pore size distributions; (b) CO2 adsorption curves; (c) CO2-TPD profiles; (d) UV-Vis diffuse reflectance spectra with inset showing (αhv)2 versus hv plots; (e, f) Mott-Schottky spectra of (e) ZIS and (f) 125-Tyr. Colorful figures are available on website
图4 准原位XPS图谱
Fig. 4 Quasi-in situ XPS spectra (a) Total spectra; (b) Zn2p, (c) In3d, (d) S2p, (e) Ti2p, and (f) O1s XPS spectra of ZIS-T20 before and under light irradiation
图5 材料的光电性能测试
Fig. 5 Photoelectric performance tests of materials (a) Steady-state PL spectra; (b) TRPL spectra; (c) Transient photocurrents; (d) EIS plots. Colorful figures are available on website
图6 材料的光催化性能测试
Fig. 6 Photocatalytic performance tests of materials (a) Photocatalytic CO2 reduction rates of different samples; (b) Photocatalytic products of ZIS-T20 for 8 h; (c) Photocatalytic cycle tests of ZIS-T20; (d) Isotope trace of photocatalytic products
| Material | Photoreactor condition | Product | Production rate/ (μmol·g−1·h−1) | Ref. |
|---|---|---|---|---|
| Porous TiO2 (B) | 300 W Xe-lamp | CH4 CH3OH | 0.23 0.08 | [ |
| TiO2 anatase | 90 mW/cm2 solar simulator | CO | 0.55 | [ |
| Pure ZnIn2S4 | 300 W Xe-lamp | CO CH4 | 1.56 0.026 | [ |
| 3D-ZnIn2S4/TiO2 | 300 W Xe-lamp | CH4 | 1.135 | [ |
| 2D/2D ZIS-T20 | 300 W Xe-lamp | CO CH4 | 58.87 12.03 | This work |
表1 相关文献报道的催化剂及其光催化效果
Table 1 Reported catalysts and their photocatalytic effects
| Material | Photoreactor condition | Product | Production rate/ (μmol·g−1·h−1) | Ref. |
|---|---|---|---|---|
| Porous TiO2 (B) | 300 W Xe-lamp | CH4 CH3OH | 0.23 0.08 | [ |
| TiO2 anatase | 90 mW/cm2 solar simulator | CO | 0.55 | [ |
| Pure ZnIn2S4 | 300 W Xe-lamp | CO CH4 | 1.56 0.026 | [ |
| 3D-ZnIn2S4/TiO2 | 300 W Xe-lamp | CH4 | 1.135 | [ |
| 2D/2D ZIS-T20 | 300 W Xe-lamp | CO CH4 | 58.87 12.03 | This work |
| [1] | GHOSH S, MODAK A, SAMANTA A, et al. Recent progress in materials development for CO2 conversion: issues and challenges. Materials Advances, 2021, 2(10): 3161. |
| [2] |
LIU W, LI H Q, OU P F, et al. Isolated Cu-Sn diatomic sites for enhanced electroreduction of CO2 to CO. Nano Research, 2023, 16(7): 8729.
DOI |
| [3] |
GAO W, LI S, HE H C, et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nature Communications, 2021, 12: 4747.
DOI |
| [4] |
JIA X M, SUN H Y, LIN H L, et al. In-depth insight into the mechanism on photocatalytic selective CO2 reduction coupled with tetracycline oxidation over BiO1-xBr/g-C3N4. Applied Surface Science, 2023, 614: 156017.
DOI URL |
| [5] | SAGARA N, KAMIMURA S, TSUBOTA T, et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Applied Catalysis B: Environmental, 2016, 192: 193. |
| [6] |
FU Y J, XU Y R, MAO Y J, et al. Multi-functional Ag/Ag3PO4/AgPMo with S-scheme heterojunction for boosted photocatalytic performance. Separation and Purification Technology, 2023, 317: 123922.
DOI URL |
| [7] |
WANG G R, QUAN Y K, HAO X Q, et al. Strong redox-capable graphdiyne-based double S-scheme heterojunction 10%GC/Mo for enhanced photocatalytic hydrogen evolution. Journal of Environmental Chemical Engineering, 2023, 11(1): 109119.
DOI URL |
| [8] |
ALI S, NASIR J A, DARA R N, et al. Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: a review. Inorganic Chemistry Communications, 2022, 145: 110011.
DOI URL |
| [9] |
MOURYA A K, SINGH R P, KUMAR T, et al. Tuning the morphologies of ZnO for enhanced photocatalytic activity. Inorganic Chemistry Communications, 2023, 154: 110850.
DOI URL |
| [10] |
LIU X B, ZHU C Y, LI M Y, et al. Confinement synthesis of atomic copper-anchored polymeric carbon nitride in crystalline UiO-66-NH2 for high-performance CO2-to-CH3OH photocatalysis. Angewandte Chemie International Edition, 2024, 63(45): e202412408.
DOI URL |
| [11] |
WANG M M, MA Y X, FO Y M, et al. Theoretical insights into the origin of highly efficient photocatalyst NiO/NaTaO3 for overall water splitting. International Journal of Hydrogen Energy, 2020, 45(38): 19357.
DOI URL |
| [12] |
PAN B, WU Y, RHIMI B, et al. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. Journal of Energy Chemistry, 2021, 57: 1.
DOI URL |
| [13] | WANG J, SUN S J, ZHOU R, et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4. Journal of Materials Science & Technology, 2021, 78: 1. |
| [14] |
ANUCHA C B, ALTIN I, BACAKSIZ E, et al. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: in the light of modification strategies. Chemical Engineering Journal Advances, 2022, 10: 100262.
DOI URL |
| [15] |
ALWARED A I, SULAIMAN F A, RAAD H, et al. Ability of FeNi3/SiO2/TiO2 nanocomposite to degrade amoxicillin in wastewater samples in solar light-driven processes. South African Journal of Botany, 2023, 153: 195.
DOI URL |
| [16] | WANG J, WANG G H, CHENG B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo red photodegradation. Chinese Journal of Catalysis, 2021, 42(1): 56. |
| [17] | WU X H, CHEN G Q, LI L T, et al. ZnIn2S4-based S-scheme heterojunction photocatalyst. Journal of Materials Science & Technology, 2023, 167: 184. |
| [18] |
LI M Z, WANG L L, ZHANG X Y, et al. Recent status and future perspectives of ZnIn2S4 for energy conversion and environmental remediation. Chinese Chemical Letters, 2023, 34(7): 107775.
DOI URL |
| [19] |
SHI X W, DAI C, WANG X, et al. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nature Communications, 2022, 13: 1287.
DOI |
| [20] |
CHONG W K, NG B J, ER C C, et al. Insights from density functional theory calculations on heteroatom P-doped ZnIn2S4 bilayer nanosheets with atomic-level charge steering for photocatalytic water splitting. Scientific Reports, 2022, 12: 1927.
DOI |
| [21] |
LIU H, ZHANG J, AO D. Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light- driven H2 production. Applied Catalysis B: Environmental, 2018, 221: 433.
DOI URL |
| [22] |
GHALEHSEFID E S, JAHANI Z G, ALIABADI A, et al. TiO2 nanotube/ZnIn2S4 nanoflower composite with step-scheme heterojunction for efficient photocatalytic H2O2 production and organic dye degradation. Journal of Environmental Chemical Engineering, 2023, 11(3): 110160.
DOI URL |
| [23] |
HE Z L, ZHANG J, LI X, et al. 1D/2D heterostructured photocatalysts: from design and unique properties to their environmental applications. Small, 2020, 16(46): 2005051.
DOI URL |
| [24] |
LIU G, WANG G H, HU Z H, et al. Ag2O nanoparticles decorated TiO2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Applied Surface Science, 2019, 465: 902.
DOI URL |
| [25] |
DU H, LI N Y, YANG L X, et al. Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr(VI) reduction under visible light: performance and mechanism. Separation and Purification Technology, 2023, 304: 122204.
DOI URL |
| [26] |
NING Y Q, LV D Q, TANG Q, et al. Novel 2D/2D/2D heterojunction of ZnIn2S4/g-C3N4/MoS2 for enhanced photocatalytic hydrogen evolution reaction. Ceramics International, 2024, 50(22): 48692.
DOI URL |
| [27] |
GUO F, YANG M, LI R X, et al. Nanosheet-engineered NH2-MIL-125 with highly active facets for enhanced solar CO2 reduction. ACS Catalysis, 2022, 12(15): 9486.
DOI URL |
| [28] |
XIANG G L, LI T Y, ZHUANG J, et al. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chemical Communications, 2010, 46(36): 6801.
DOI PMID |
| [29] |
ALMAJIDI Y Q, AL-DOLAIMY F, ALSAAB H O, et al. Build-in internal electric field in vacancy engineered CdS@ZnIn2S4 type-II heterostructure for boosting photocatalytic tetracycline degradation and in situ H2O2 generation. Materials Research Bulletin, 2024, 170: 112570.
DOI URL |
| [30] |
JALALI E, MAGHSOUDI S, NOROOZIAN E. A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from ultra violet. Scientific Reports, 2020, 10: 426.
DOI |
| [31] |
FIAZ M, KASHIF M, MAJEED D S, et al. Facile fabrication of highly efficient photoelectrocatalysts MxOy@NH2-MIL-125(Ti) for enhanced hydrogen evolution reaction. ChemistrySelect, 2019, 4(23): 6996.
DOI URL |
| [32] |
CHENG X M, DAO X Y, WANG S Q, et al. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catalysis, 2020, 11(2): 650.
DOI URL |
| [33] |
PRAVEEN P, VIRUTHAGIRI G, MUGUNDAN S, et al. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles-synthesized via Sol-Gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 622.
DOI URL |
| [34] |
GE Y, ZHANG C H, YU Z Z, et al. ZnIn2S4/TiO2 photocatalyst for CO2 photoreduction: advancing sustainable energy conversion to renewable solar fuels. Journal of Industrial and Engineering Chemistry, 2024, 132: 335.
DOI URL |
| [35] |
NGUYEN N H, WU H Y, BAI H. Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes. Chemical Engineering Journal, 2015, 269: 60.
DOI URL |
| [36] |
TANG Q J, SUN Z X, WANG P L, et al. Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Applied Surface Science, 2019, 463: 456.
DOI URL |
| [37] |
WANG L B, CHENG B, ZHANG L Y, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17(41): 2103447.
DOI URL |
| [38] |
JIA X F, LU Y, DU K R, et al. Interfacial mediation by Sn and S vacancies of p-SnS/n-ZnIn2S4 for enhancing photocatalytic hydrogen evolution with new scheme of type-I heterojunction. Advanced Functional Materials, 2023, 33(50): 2304072.
DOI URL |
| [39] |
LI H, CHEN Z H, ZHAO L, et al. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Metals, 2019, 38(5): 420.
DOI URL |
| [40] |
DI T M, ZHANG J F, CHENG B, et al. Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity. Science China Chemistry, 2018, 61(3): 344.
DOI |
| [41] |
LIU L J, ZHAO H L, ANDINO J M, et al. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catalysis, 2012, 2(8): 1817.
DOI URL |
| [42] |
ZHOU F H, ZHANG Y L, WU J, et al. Utilizing Er-doped ZnIn2S4 for efficient photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2024, 341: 123347.
DOI URL |
| [43] |
YANG G, CHEN D M, DING H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental, 2017, 219: 611.
DOI URL |
| [1] | 贾相华, 张辉霞, 刘艳凤, 左桂鸿. 湿化学法制备Cu2O/Cu空心球异质结光催化剂[J]. 无机材料学报, 2025, 40(4): 397-404. |
| [2] | 任先培, 李超, 凌芳, 胡启威, 于俊玲, 向晖, 彭跃红. 炭黑表面CoMoSSe异质结构合金的制备及其高效析氢研究[J]. 无机材料学报, 2025, 40(11): 1293-1299. |
| [3] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
| [4] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
| [5] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
| [6] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
| [7] | 胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023, 38(9): 1055-1061. |
| [8] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
| [9] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
| [10] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
| [11] | 马润东, 郭雄, 施凯旋, 安胜利, 王瑞芬, 郭瑞华. MoS2/g-C3N4 S型异质结的构建及光催化性能研究[J]. 无机材料学报, 2023, 38(10): 1176-1182. |
| [12] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
| [13] | 王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96. |
| [14] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
| [15] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||