无机材料学报

• 研究论文 • 上一篇    下一篇

利用介孔碳的限域效应提升氧还原反应中Pt催化剂的耐久性

黄应贺1,2, 黄仁兴1, 石宇星1, 雷一杰2, 于涛1, 王诚2, 顾军1   

  1. 1.南京大学 物理学院,南京 210093;
    2.清华大学 核能与新能源技术研究院,北京 100084
  • 收稿日期:2025-04-24 修回日期:2025-08-10
  • 作者简介:黄应贺(1996–), 男, 博士研究生. E-mail: 602023220030@smail.nju.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFE0207600, 2021YFB3800401); 国家自然科学基金(22372078)

Enhancing the Durability of Pt Catalysts in the Oxygen Reduction Reaction by Confinement Effect of Mesoporous Carbon

HUANG Yinghe1,2, HUANG Renxing1, SHI Yuxing1, LEI Yijie2, YU Tao1, WANG Cheng2, GU Jun1   

  1. 1. School of Physics, Nanjing University, Nanjing 210093, China;
    2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2025-04-24 Revised:2025-08-10
  • About author:HUANG Yinghe (1996–), male, PhD candidate. E-mail: 602023220030@smail.nju.edu.cn
  • Supported by:
    National Key R&D Program of China (2022YFE0207600, 2021YFB3800401); National Natural Science Foundation of China (22372078)

摘要: 铂碳催化剂是质子交换膜燃料电池最具前景的阴极催化剂之一,但其耐久性不佳。这主要是由于铂纳米颗粒(Pt NPs)会发生团聚和迁移,Pt颗粒尺寸变大,导致催化活性丧失。本研究通过构建具有串珠状内部孔隙结构的介孔碳载体(IPMC),研究了Pt NPs在碳载体中的沉积位置,并将其精准限域在孔道内部,利用独特的孔隙结构,实现了Pt NPs的高效限域,提升了材料稳定性。分析表明,介孔碳催化剂中的Pt NPs在经过30000圈加速耐久性测试(ADT)循环后平均粒径仅增加了0.46 nm,而实心碳催化剂中的Pt NPs增加了0.79 nm。介孔碳催化剂的电化学性能损失较小,电化学活性面积(ECSA)损失率为24.18%,显著低于实心碳催化剂(32.33%)。耐久性优异主要归因于IPMC独特的孔隙结构所产生的限域效应,进而抑制内部Pt NPs的奥斯特瓦尔德(Ostwald)熟化和迁移行为,显著延缓了氧还原反应(ORR)催化活性衰减。该工作通过揭示串珠状介孔对铂纳米颗粒的物理限域机制—即相互连通且具有局部收缩的孔道结构形成空间屏障,有效阻碍溶解铂物种的扩散迁移并锚定颗粒位置,为设计最佳碳载体提供了更精确的结构蓝图。

关键词: 铂碳催化剂, 介孔碳, 耐久性, 奥斯特瓦尔德熟化, ORR催化活性

Abstract: Platinum-carbon (Pt/C) catalyst is one of the most promising cathode materials for proton exchange membrane fuel cells (PEMFCs). However, it faces significant durability challenges, primarily due to the growth and agglomeration of platinum nanoparticles (Pt NPs), which results in increased Pt particle size and consequent loss of catalytic activity. In this study, an internally pearl-like mesoporous carbon (IPMC) support with beaded pore channels was constructed to investigate the deposition sites of Pt NPs within carbon supports. Through precisely confining Pt NPs within the pore channels by leveraging the unique pore architecture, efficient confinement and stabilization of Pt NPs were achieved. The average size of Pt NPs in IPMC increased by only 0.46 nm after 30000 cycles of accelerated durability tests (ADT), significantly less than the growth (0.79 nm) observed in conventional solid carbon-supported catalysts. The IPMC-based catalyst also exhibited slower electrochemical performance decay. The electrochemical active area (ECSA) loss rate of the mesoporous carbon catalyst was 24.18%, significantly lower than the 32.33% observed for solid carbon catalysts in comparative testing. This superior durability originates from the unique pore structure of IPMC, which imposes spatial confinement effects that effectively suppress Ostwald ripening and migration of Pt NPs, thereby mitigating the degradation of oxygen reduction reaction (ORR) activity. This work delivers a precise structural blueprint for optimal carbon carriers by revealing how beaded mesopores confine platinum nanoparticles: interconnected pore channels with local constrictions form spatial barriers that hinder dissolved platinum species diffusion while anchoring particles. This work provides a precise structural blueprint for designing optimized carbon supports for high-stability PEMFC catalysts.

Key words: platinum-carbon catalyst, mesoporous carbon, durability, Ostwald ripening, ORR catalytic activity

中图分类号: