[1] |
LI J, KLOPSCH M C, STAN S. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56 Ni0.16Co0.08]O2 with improved rate capability .Journal of Power Sources, 2011, 196(10): 4821-4825.
|
[2] |
PARK O K, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel?Energy & Environmental Science, 2011, 4: 1621-1633.
|
[3] |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367.
|
[4] |
KANG K, MENG Y S, BRÉGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311: 977-980.
|
[5] |
SIMMEN F, HINTENNACH A, HORISBERGER M, et al. Aspects of the surface layer formation on Li1+xMn2O4-δ during electrochemical cycling. Journal of The Electrochemical Society, 2010, 157(9): A1026-A1029.
|
[6] |
XIE J, TANAKA T, IMANISHI N. Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering. Journal of Power Sources, 2008, 180(1): 576-581.
|
[7] |
WANG Y, CAO G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Advanced Materials, 2008, 20(12): 2251-2269.
|
[8] |
GUO Y G, HU Y S, SIGLE W. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Advanced Materials, 2007, 19(16): 2087-2091.
|
[9] |
LIDDLE B J, COLLINS S M, BARTLETT B M. A new one- pot hydrothermal synthesis and electrochemical characterization of Li1+xMn2-yO4 spinel structured compounds.- Energy & Environmental Science, 2010, 3: 1339-1346.
|
[10] |
ARILLO M A, CUELLO G, LÓPEZ M L. Structural characterisation and physical properties of LiMMnO4 (M=Cr, Ti) spinels. Solid State Sciences, 2005, 7(1): 25-32.
|
[11] |
HAYASHI N, IKUTA H, WAKIHARA M. Cathode of LiMgyMn2- yO4 and yMn2-yO4-δ spinel phases for lithium secondary batteries. Journal of The Electrochemical Society, 1999, 146(4): 1351-1354.
|
[12] |
MANDAL S, ROJAS R M, AMARILLA J M, et al. High temperature Co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chemistry of Materials, 2002, 14(4): 1598-1605.
|
[13] |
IVANOVA S, ZHECHEVA E, STOYANOVA R, et al. High- voltage LiNi1/2Mn3/2O4 spinel: cationic order and particle size distribution. The Journal of Physical Chemistry C, 2011, 115(50): 25170-25182 .
|
[14] |
XIONG L L, XU Y L, ZHANG C, et al. Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4. Journal of Solid State Electrochemistry, 2011, 15(6): 1263-1269.
|
[15] |
MYUNG S T, KOMABA S, HOSOYA K, et al. Synthesis of LiNi0.5Mn0.5-xTixO2 by an emulsion drying method and effect of Ti on structure and electrochemical properties. Chemistry of Materials, 2005, 17(9): 2427-2435.
|
[16] |
TSUJI T, UMAKOSHI H, YAMAMURA Y. Thermodynamic properties of undoped and Fe-doped LiMn2O4 at high temperature. Journal of Physics and Chemistry of Solids, 2005, 66(2/3/4): 283-287.
|
[17] |
LI G H, IKUTA H, UCHIDA T. The spinel phases LiMyMn2-yO4 (M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries. Journal of The Electrochemical Society, 1996, 143(1): 178-182.
|
[18] |
SUNG W O, PARK S H, JUNG E, et al., Improved high-rate capability of Li [Ni0.5CoyMn1.5-y]O4-zFz spinel materials for 5 V lithium secondary batteries. Journal of Industrial and Engineering Chemistry, 2007, 13: 1174-1179.
|
[19] |
THIRUNAKARAN R, SIVASHANMUGAM A, GOPUKUMAR S. Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2-xO4 (x=Al: 0.00-0.40) synthesized via fumaric acid- assisted Sol-Gel synthesis for use in lithium rechargeable batteries. Journal of Physics and Chemistry of Solids, 2008, 69(8): 2082-2090.
|
[20] |
LIU Z L,WANG H B, FANG L. Improving the high-temperature performance of LiMn2O4 spinel by micro-emulsion coating of LiCoO2. Journal of Power Sources, 2002, 104(1): 101-107.
|
[21] |
YOSHIMURA M, BYRAPPA K. Hydrothermal processing of materials: past, present and future. Journal of Materials Science, 2008, 43(7): 2085-2103.
|
[22] |
LI Y J, KONG L, XI X M, et al. Hydrothermal Preparation and Characterization of LiMn2O4 for Li-ion Battery Application. Proceedings of COM 2012, Niagara Falls, Ontario, Canada, 2012.
|
[23] |
AKIMOTO J, TAKAHASHI Y, GOTOH Y, et al. Synthesis, crystal structure, and magnetic property of delithiated LixMnO2 (x < 0.1) single crystals: A novel disordered rocksalt-type manganese dioxide. Chemical of Materials, 2003, 15(15): 2984-2990.
|
[24] |
HE X M, LI J J, CAI Y. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. Journal of Power Sources, 2005, 150: 216-222.
|
[25] |
SHEN C H, LIU R S, GUNDAKARAM R. Effect of Co doping in LiMn2O4. Journal of Power Sources, 2001, 102(1/2): 21-28.
|
[26] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32: 751-767.
|
[27] |
GAO Y, REIMERS J N, DAHN J R. Changes in the voltage profile of Li/Li1+xMn2-xO4 cells as a function of x. Physical Review B, 1996, 54: 3878.
|
[28] |
JAMES G S. Lange's Handbook of Chemistry. McGraw-Hill, New York, 1992.
|
[29] |
KONG L, LI Y J, LI W J, et al. Synthesis and characterization of Li1.035Mn1.965O4 and Al-doped Li1.035Al0.035Mn1.930O4 as cathode materials for Li-ion batteries by a wet-chemical technique. Journal of Inorganic Materials, 2013, 28(3): 336-340.
|
[30] |
LIANG Y Y, BAO S J, LI H L. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries . Journal of Solid State Chemistry, 2006, 179(7): 2133-2140.
|
[31] |
HJELM A K, LINDBERGH G. Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS). Electrochimica Acta, 2002, 47(11): 1747-1759.
|
[32] |
GUO Z P, ZHONG S, WANG G X. Structure and electrochemical characteristics of LiMn0.7M0.3O2(M=Ti, V, Zn, Mo, Co, Mg, Cr). Journal of Alloys and Compounds, 2003, 348(1/2): 231-235.
|
[33] |
SHARMA Y, SHARMA N, SUBBA RAO G V. Lithium-storage and cycleability of nano-CdSnO3 as an anode material for lithium- ion batteries. Journal of Power Sources, 2009, 192(2): 627-635.
|