无机材料学报 ›› 2025, Vol. 40 ›› Issue (6): 609-626.DOI: 10.15541/jim20240450
胡智超1(), 杨鸿宇2(
), 杨鸿程3, 孙成礼1, 杨俊4, 李恩竹1(
)
收稿日期:
2024-10-29
修回日期:
2025-01-02
出版日期:
2025-06-20
网络出版日期:
2025-01-09
通讯作者:
杨鸿宇, 讲师. E-mail: yanghongyu@xidian.edu.cn;作者简介:
胡智超(2000-), 男, 博士研究生. E-mail: 3256341968@qq.com
基金资助:
HU Zhichao1(), YANG Hongyu2(
), YANG Hongcheng3, SUN Chengli1, YANG Jun4, LI Enzhu1(
)
Received:
2024-10-29
Revised:
2025-01-02
Published:
2025-06-20
Online:
2025-01-09
Contact:
YANG Hongyu, lecturer. E-mail: yanghongyu@xidian.edu.cn;About author:
HU Zhichao (2000-), male, PhD candidate. E-mail: 3256341968@qq.com
Supported by:
摘要:
目前通信技术的飞速发展对介质陶瓷滤波器提出了越来越严苛的要求, 如何高效设计新的介质材料以推动其发展意义重大。材料结构与性能之间的关系对于微波介质陶瓷的合成与设计至关重要。P-V-L键理论旨在通过计算提供晶体结构参数和基本化学键特征, 例如化学键的键离子性、键共价性、键敏感性、晶格能、键能等, 这些参数为微波介质陶瓷的改性设计提供了理论基础和指导。近年来, 研究人员致力于将P-V-L键理论运用到众多陶瓷体系中, 解释微波介质陶瓷结构与性能之间的关系, 并以此理论为基础提出新的改性策略, 从而获得优异的微波介电性能。本文详细介绍了P-V-L键理论的基本概念和复杂多晶的二元键合公式, 概述了该理论在微波介质陶瓷领域中针对化学键参数和化学键特征的计算方法, 同时分析了近年来P-V-L键理论在几类常见微波介质陶瓷体系中的应用。通过P-V-L键理论分析可以提供离子掺杂改性体系中的键特征、结构演变和介电性能, 这对于微波介质陶瓷的发展和应用具有重要意义。
中图分类号:
胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626.
HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics[J]. Journal of Inorganic Materials, 2025, 40(6): 609-626.
图2 (Eg, φ)极坐标对应于以笛卡尔坐标(Eh, C)表示的共价和离子能量, 极角φ称为离子度相位角(参照文献[15]绘制)
Fig. 2 Polar coordinates (Eg, φ) correspond to the covalent and ionic energies expressed in Cartesian coordinates (Eh, C), and the polar angle φ indicating the ionic phase angle (drawn with reference to Ref. [15])
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST*/℃ | Ref. |
---|---|---|---|---|---|---|
CaMgSi2O6 | ![]() | 7.46 | 59638 | -46 | 1290 | [ |
CaCoSi2O6 | 6.04 | 12457 | -18.91 | 1175 | [ | |
CaMgSi1.95Ti0.05O6 | 7.94 | 80774 | -58.56 | 1275 | [ | |
Sr2MgSi2O7 | ![]() | 8.3 | 55000 | -47.5 | 1550 | [ |
Sr2MnSi2O7 | 8.8 | 32000 | -58.5 | 1375 | ||
Ca2ZnSi2O7 | ![]() | 11.0 | 13500 | -64.3 | 1300 | |
Mg2SiO4 | ![]() | 6.8 | 270000 | -70 | 1500 | [ |
(Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 | 8.02 | 28431 | -38.2 | 1250 | [ | |
SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10 | ![]() | 5.8 | 65589 | -50 | 1050 | [ |
表1 硅酸盐陶瓷晶体结构及微波介电性能
Table 1 Crystal structures and microwave dielectric properties of silicate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST*/℃ | Ref. |
---|---|---|---|---|---|---|
CaMgSi2O6 | ![]() | 7.46 | 59638 | -46 | 1290 | [ |
CaCoSi2O6 | 6.04 | 12457 | -18.91 | 1175 | [ | |
CaMgSi1.95Ti0.05O6 | 7.94 | 80774 | -58.56 | 1275 | [ | |
Sr2MgSi2O7 | ![]() | 8.3 | 55000 | -47.5 | 1550 | [ |
Sr2MnSi2O7 | 8.8 | 32000 | -58.5 | 1375 | ||
Ca2ZnSi2O7 | ![]() | 11.0 | 13500 | -64.3 | 1300 | |
Mg2SiO4 | ![]() | 6.8 | 270000 | -70 | 1500 | [ |
(Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 | 8.02 | 28431 | -38.2 | 1250 | [ | |
SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10 | ![]() | 5.8 | 65589 | -50 | 1050 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
LiNiPO4 | ![]() | 11.49 | 10792 | -2.8 | 900 | [ |
LiLnPO4(Ln=La, Sm, Eu) | ![]() | 5.04-5.26 | 41607-75968 | -19.64--47.49 | 910-925 | [ |
KSrPO4 | ![]() | 7.85 | 34527 | -14.82 | 950 | [ |
Ni3(PO4)2 | ![]() | 6.23 | 83430 | -24.63 | 1200 | [ |
BaZnP2O7 | ![]() | 8.21 | 84760 | -21.9 | 900 | [ |
表2 磷酸盐陶瓷晶体结构及陶瓷微波介电性能
Table 2 Crystal structures and microwave dielectric properties of phosphate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
LiNiPO4 | ![]() | 11.49 | 10792 | -2.8 | 900 | [ |
LiLnPO4(Ln=La, Sm, Eu) | ![]() | 5.04-5.26 | 41607-75968 | -19.64--47.49 | 910-925 | [ |
KSrPO4 | ![]() | 7.85 | 34527 | -14.82 | 950 | [ |
Ni3(PO4)2 | ![]() | 6.23 | 83430 | -24.63 | 1200 | [ |
BaZnP2O7 | ![]() | 8.21 | 84760 | -21.9 | 900 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
Li3Mg2NbO6 | ![]() | 15.3 | 109600 | -17.3 | 1100 | [ |
MgNb2O6 | ![]() | 20.82 | 121580 | -48.89 | 1460 | [ |
ZnCu2Nb2O8 | ![]() | 18.56 | 47776 | -16.3 | 920 | [ |
ZnZrNb2O8−Cu | ![]() | 27.9 | 73200 | -40 | 1175 | [ |
Zn0.5Ti0.5NbO4−Co | ![]() | 38.11 | 39720 | -70 | 1150 | [ |
Zn0.5Ti0.5NbO4−Ta | 37.86 | 43642 | -72.69 | 1150 | [ | |
ZnTiNb2O8 | ![]() | 41.52 | 50827 | -2.59 | 1150 | |
SmNbO4 | ![]() | 16.89-18.01 | 75200-97800 | 5.6-2.3 | 1150 | [ |
表3 铌酸盐陶瓷晶体结构及微波介电性能
Table 3 Crystal structures and microwave dielectric properties of niobate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
Li3Mg2NbO6 | ![]() | 15.3 | 109600 | -17.3 | 1100 | [ |
MgNb2O6 | ![]() | 20.82 | 121580 | -48.89 | 1460 | [ |
ZnCu2Nb2O8 | ![]() | 18.56 | 47776 | -16.3 | 920 | [ |
ZnZrNb2O8−Cu | ![]() | 27.9 | 73200 | -40 | 1175 | [ |
Zn0.5Ti0.5NbO4−Co | ![]() | 38.11 | 39720 | -70 | 1150 | [ |
Zn0.5Ti0.5NbO4−Ta | 37.86 | 43642 | -72.69 | 1150 | [ | |
ZnTiNb2O8 | ![]() | 41.52 | 50827 | -2.59 | 1150 | |
SmNbO4 | ![]() | 16.89-18.01 | 75200-97800 | 5.6-2.3 | 1150 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
NdTaO4 | ![]() | 18 | 13136 | -21 | 1500 | [ |
YbTaO4 | 18.52 | 21928 | 1.25 | 1675 | [ | |
MgTa2O6 | ![]() | 27.27 | 109203 | 53.38 | 1300 | [ |
NiTa2O6 | 24.58 | 27610 | 33.94 | 1250 | ||
MgTa2O6−Mn | 28 | 105000 | 19.5 | 1325 | [ | |
Mg(1−x)NixTa2O6 | 27 | 173000 | 35 | 1325 | [ | |
Ni0.5Ti0.5TaO4 | ![]() | 33.06 | 14600 | 95 | 1200−1300 | [ |
Co0.5Ti0.5TaO4 | 40.69 | 17291 | 114.54 | 1075 | [ | |
ZnZrTa2O8 | ![]() | 23.14 | 140915 | -26.42 | 1375 | [ |
表4 钽酸盐陶瓷晶体结构及微波介电性能
Table 4 Crystal structures and microwave dielectric properties of tantalate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
NdTaO4 | ![]() | 18 | 13136 | -21 | 1500 | [ |
YbTaO4 | 18.52 | 21928 | 1.25 | 1675 | [ | |
MgTa2O6 | ![]() | 27.27 | 109203 | 53.38 | 1300 | [ |
NiTa2O6 | 24.58 | 27610 | 33.94 | 1250 | ||
MgTa2O6−Mn | 28 | 105000 | 19.5 | 1325 | [ | |
Mg(1−x)NixTa2O6 | 27 | 173000 | 35 | 1325 | [ | |
Ni0.5Ti0.5TaO4 | ![]() | 33.06 | 14600 | 95 | 1200−1300 | [ |
Co0.5Ti0.5TaO4 | 40.69 | 17291 | 114.54 | 1075 | [ | |
ZnZrTa2O8 | ![]() | 23.14 | 140915 | -26.42 | 1375 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/ (×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
SrTiO4 | ![]() | 39.41 | 93120 | 110.54 | 1475 | [ |
Mg2TiO4 | ![]() | 14.51 | 161570 | -49.3 | 1480 | [ |
ZnMgTiO4 | ![]() | 16.8 | 202021 | -38 | 1400 | [ |
Na2Ti6O13 | ![]() | 34.3 | 33660 | 10.03 | 1025 | [ |
Li2ZnTi3O8 | ![]() | 25.92 | 109534 | -8.21 | 1100 | [ |
Li5Mg3Ti2O9F | ![]() | 14.8 | 98500 | -15.6 | 925 | [ |
Ca0.61Nd0.26TiO3−Cr | ![]() | 99.3 | 16078 | 244.5 | 1400 | [ |
Zn0.15Nb0.3Ti0.55O2 | ![]() | 94.35 | 11889 | 353.43 | 1075 | [ |
表5 钛酸盐陶瓷晶体结构及微波介电性能
Table 5 Crystal structures and microwave dielectric properties of titanate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/ (×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
SrTiO4 | ![]() | 39.41 | 93120 | 110.54 | 1475 | [ |
Mg2TiO4 | ![]() | 14.51 | 161570 | -49.3 | 1480 | [ |
ZnMgTiO4 | ![]() | 16.8 | 202021 | -38 | 1400 | [ |
Na2Ti6O13 | ![]() | 34.3 | 33660 | 10.03 | 1025 | [ |
Li2ZnTi3O8 | ![]() | 25.92 | 109534 | -8.21 | 1100 | [ |
Li5Mg3Ti2O9F | ![]() | 14.8 | 98500 | -15.6 | 925 | [ |
Ca0.61Nd0.26TiO3−Cr | ![]() | 99.3 | 16078 | 244.5 | 1400 | [ |
Zn0.15Nb0.3Ti0.55O2 | ![]() | 94.35 | 11889 | 353.43 | 1075 | [ |
[1] | REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 2006, 89(7): 2063. |
[2] | SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 2015, 60(7): 392. |
[3] | ZHOU D, PANG L X, WANG D W, et al. BiVO4 based high k microwave dielectric materials: a review. Journal of Materials Chemistry C, 2018, 6(35): 9290. |
[4] | JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). Journal of the American Ceramic Society, 2010, 93(1): 147. |
[5] | YANG H C, ZHANG S R, YANG H Y, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. Journal of Advanced Ceramics, 2021, 10(5): 885. |
[6] | HUANG Z P, QIAO J L, LI L X. Crystal structure and microwave dielectric characteristics of ixiolite ceramics with molybdenum ion modification and tri-layered structure. Journal of Alloys and Compounds, 2023, 931: 167489. |
[7] | UBIC R, REANEY I M, LEE W E. Microwave dielectric solid- solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation). International Materials Reviews, 1998, 43(5): 205. |
[8] | TAKAHASHI H, BABA Y, EZAKI K, et al. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3- TiO2 (Ln: lanthanide) ceramics system. Japanese Journal of Applied Physics, 1996, 35(9S): 5069. |
[9] | CAVA R J. Dielectric materials for applications in microwave communications. Journal of Materials Chemistry, 2001, 11(1): 54. |
[10] | VANDERAH T A. Talking ceramics. Science, 2002, 298(5596): 1182. |
[11] | ZHOU D, FAN X Q, JIN X W, et al. Structures, phase transformations, and dielectric properties of BiTaO4 ceramics. Inorganic Chemistry, 2016, 55(22): 11979. |
[12] | PHILLIPS J C. Dielectric definition of electronegativity. Physical Review Letters, 1968, 20(11): 550. |
[13] | VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Physical Review, 1969, 182: 891. |
[14] | VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Physical Review, 1969, 187(3): 1007. |
[15] | PHILLIPS J C. Ionicity of the chemical bond in crystals. Reviews of Modern Physics, 1970, 42(3): 317. |
[16] | LEVINE B F. Bond susceptibilities and ionicities in complex crystal structures. Journal of Chemical Physics, 1973, 59(3): 1463. |
[17] | XUE D F, ZHANG S Y. Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. Journal of Physics: Condensed Matter, 1996, 8: 1949. |
[18] | PENN D R. Wave-number-dependent dielectric function of semiconductors. Physical Review, 1962, 128(5): 2093. |
[19] | KUCHARCZYK W. A bond-charge calculation of the quadratic electro-optic effect in LiF. Journal of Physics C: Solid State Physics, 1987, 20(12): 1875. |
[20] | YANG H Y, ZHANG S R, YANG H C, et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review. Inorganic Chemistry Frontiers, 2020, 7(23): 4711. |
[21] | SHI J S, ZHANG S Y. Barycenter of energy of lanthanide 4fN-15d configuration in inorganic crystals. The Journal of Physical Chemistry B, 2004, 108(49): 18845. |
[22] | WU Z J, MENG Q B, ZHANG S Y. Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6+y. Physical Review B, 1998, 58(2): 958. |
[23] | XUE D F, ZHANG S Y. Chemical bond analysis of nonlinearity of urea crystal. The Journal of Physical Chemistry A, 1997, 101(30): 5547. |
[24] | LIU D T, ZHANG S Y, WU Z J. Lattice energy estimation for inorganic ionic crystals. Inorganic Chemistry, 2003, 42(7): 2465. |
[25] | ROTH G, REDHAMMER G J. A comparison of the clinopyroxene compounds CaZnSi2O6 and CaZnGe2O6. Acta Crystallographica Section C, 2005, 61(2): i20. |
[26] | XIAO M, WEI Y S, ZHANG P. The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic. Materials Chemistry and Physics, 2019, 225: 99. |
[27] | SUN H P, ZHANG Q L, YANG H, et al. (Ca1-xMgx)SiO3: a low-permittivity microwave dielectric ceramic system. Materials Science and Engineering: B, 2007, 138(1): 46. |
[28] | LAI Y M, SU H, WANG G, et al. Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. Journal of Alloys and Compounds, 2019, 772: 40. |
[29] | XIAO M, WEI Y S, SUN H R, et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 20339. |
[30] | SUGIHARA J, KAKIMOTO K I, KAGOMIYA I, et al. Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. Journal of the European Ceramic Society, 2007, 27(8/9): 3105. |
[31] | LIU K, ZHANG H W, LIU C, et al. Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - a novel high-entropy ceramic. Ceramics International, 2022, 48(16): 23307. |
[32] | ZHANG P C, CHEN X Q, CHEN G T, et al. Structural dependence of microwave dielectric properties of Ca3MgSi2O8 ceramics. Journal of Materials Science, 2022, 57(22): 10039. |
[33] | SONG X Q, LEI W, WANG F, et al. Phase evolution, crystal structure, and microwave dielectric properties of gillespite-type ceramics. Journal of the American Ceramic Society, 2021, 104(4): 1740. |
[34] | QIN J C, LIU Z F, MA M S, et al. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q × f value via machine learning. ACS Applied Materials & Interfaces, 2021, 13(15): 17817. |
[35] | CHENG Z L, XU L M, WANG X, et al. The effect of B-site ions on crystal structure evolution and microwave dielectric properties of gillespite-type SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10. Ceramics International, 2023, 49(22): 36800. |
[36] | HUANG F Y, SU H, ZHANG Q, et al. The structural characteristics and microwave dielectric properties of Ti4+ doped CaMgSi2O6 ceramics. Ceramics International, 2022, 48(22): 33615. |
[37] | KORNEV I, BICHURIN M, RIVERA J P, et al. Magnetoelectric properties of LiCoPO4 and LiNiPO4. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(18): 12247. |
[38] | BIAN J J, KIM D W, HONG K S. Glass-free LTCC microwave dielectric ceramics. Materials Research Bulletin, 2005, 40(12): 2120. |
[39] | GUO T, WU W J, WANG Y L, et al. Relations on synthesis, crystal structure and microwave dielectric properties of SrZnP2O7 ceramics. Ceramics International, 2012, 38: S187. |
[40] | ZHANG P, WU S X, XIAO M. The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics. Journal of the European Ceramic Society, 2018, 38(13): 4433. |
[41] | TIAN H R, ZHANG X H, ZHANG Z D, et al. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/millimeter-wave communication. Journal of Advanced Ceramics, 2024, 13(5): 602. |
[42] | LI J, LIU J, ZHANG Y C, et al. Exploring the Ln-O bonding nature and charge characteristics in monazite in relation to microwave dielectric properties. Journal of the American Ceramic Society, 2024, 107(1): 175. |
[43] | FENG Z B, WANG Y Z, KIMURA H, et al. Sintering behavior, microwave dielectric properties, and chemical bond features of novel low-loss monoclinic-structure Ni3(PO4)2 ceramic based on NiO-P2O5 binary phase diagram. Ceramics International, 2022, 48(20): 30681. |
[44] | BAO J, DU J L, LIU L T, et al. A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature. Ceramics International, 2022, 48(1): 784. |
[45] | CHEN X Q, LI H, ZHANG P C, et al. A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification. Journal of the American Ceramic Society, 2021, 104(10): 5214. |
[46] | BAO J, ZHANG Y P, KIMURA H, et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics. Journal of Advanced Ceramics, 2023, 12(1): 82. |
[47] | ZHANG Y H, SUN J J, DAI N, et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. Journal of the European Ceramic Society, 2019, 39(4): 1127. |
[48] | LIU W Q, ZUO R Z. Low temperature fired Ln2Zr3(MoO4)9 (Ln=Sm, Nd) microwave dielectric ceramics. Ceramics International, 2017, 43(18): 17229. |
[49] | LIU W Q, ZUO R Z. A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. Journal of the European Ceramic Society, 2018, 38(1): 339. |
[50] | XING C F, WU B, BAO J, et al. Crystal structure, infrared spectra and microwave dielectric properties of a novel low-firing Gd2Zr3(MoO4)9 ceramic. Ceramics International, 2019, 45(17): 22207. |
[51] | TAO B J, XING C F, WANG W F, et al. A novel Ce2Zr3(MoO4)9 microwave dielectric ceramic with ultra-low firing temperature. Ceramics International, 2019, 45(18): 24675. |
[52] | TIAN H R, ZHOU X, JIANG T Y, et al. Bond characteristics and microwave dielectric properties of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics. Journal of Alloys and Compounds, 2022, 906: 164333. |
[53] | BAO J, WANG Y Z, KIMURA H, et al. Sintering characteristics, crystal structure, and microwave dielectric properties of Ce2[Zr1-x(Al1/2Nb1/2)x]3(MoO4)9 ceramics. Journal of Alloys and Compounds, 2022, 925: 166566. |
[54] | IVLEVA L I, BASIEV T T, VORONINA I S, et al. SrWO4: Nd3+-new material for multifunctional lasers. Optical Materials, 2003, 23(1/2): 439. |
[55] | NAZAROV M V, TSUKERBLAT B S, POPOVICI E J, et al. Optical lines in europium-terbium double activated calcium tungstate phosphor. Physics Letters A, 2004, 330(3/4): 291. |
[56] | YOON S H, KIM D W, CHO S Y, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society, 2006, 26(10/11): 2051. |
[57] | KRŽMANC M M, LOGAR M, BUDIČ B, et al. Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics. Journal of the American Ceramic Society, 2011, 94(8): 2464. |
[58] | KHOBRAGADE N, SINHA E, ROUT S K, et al. Structural, optical and microwave dielectric properties of Sr1-xCaxWO4 ceramics prepared by the solid state reaction route. Ceramics International, 2013, 39(8): 9627. |
[59] | PÔRTO S L, LONGO E, PIZANI P S, et al. Photoluminescence in the CaxSr1-xWO4 system at room temperature. Journal of Solid State Chemistry, 2008, 181(8): 1876. |
[60] | LONGO V M, ORHAN E, CAVALCANTE L S, et al. Understanding the origin of photoluminescence in disordered Ca0.60Sr0.40WO4: an experimental and first-principles study. Chemical Physics, 2007, 334(1/2/3): 180. |
[61] | NAJAFVANDZADEH N, VALI R. The electronic and microwave dielectric properties of Sr1-xCaxWO4 alloys by first principles calculations. Physica B: Condensed Matter, 2019, 572: 266. |
[62] | ZHANG Q, SU H, ZHANG H W, et al. Bond, vibration and microwave dielectric characteristics of Zn1-x(Li0.5Bi0.5)xWO4 ceramics with low temperature sintering. Journal of Materiomics, 2022, 8(2): 392. |
[63] | ZHANG Q, XU L L, TANG X L, et al. Electronic structure, Raman spectra, and microwave dielectric properties of co-substituted ZnWO4 ceramics. Journal of Alloys and Compounds, 2021, 874: 159928. |
[64] | YIN C Z, LI C C, YANG G J, et al. NaCa4V5O17: a low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. Journal of the European Ceramic Society, 2020, 40(2): 386. |
[65] | XIANG H C, LI C C, TANG Y, et al. Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M=Mo, W) and their chemical compatibility with metal electrodes. Journal of the European Ceramic Society, 2017, 37(13): 3959. |
[66] | CAO H M, CHEN L, LI B. A new microwave dielectric ceramic Zn2V2O7 with low sintering temperature. Materials Letters, 2022, 326: 132924. |
[67] | LIN M C, LING I C, HSU T H, et al. Investigation of the correlation between structure and microwave dielectric properties of ZnV2O6 ceramic using P-V-L bond theory. Journal of the European Ceramic Society, 2024, 44(8): 5016. |
[68] | YANG R J, CHEN L, LI B. A new rare-earth orthovanadate microwave dielectric ceramic: ErVO4. Materials Chemistry and Physics, 2023, 301: 127630. |
[69] | ZHANG P, FAN X, FAN X Y. Effects of Cu2+ substitution on the sintering behavior, crystal structure and microwave dielectric properties of Li3Mg4NbO8 ceramics. Materials Chemistry and Physics, 2024, 316: 129118. |
[70] | XIE F, ZHOU S, GAO F, et al. Raman vibration, bond chemistry and enhanced microwave dielectric properties of Li3Mg2NbO6 ceramics under an oxygen atmosphere. Ceramics International, 2022, 48(21): 32049. |
[71] | PENG S, LI C, GAO X H, et al. Crystal structures, chemical bonds, and microwave dielectric properties of ZnCu2Nb2O8 ceramics. Ceramics International, 2024, 50(1): 2396. |
[72] | HUANG Z P, QIAO J L, LI L X. Enhanced dielectric properties and chemical bond characteristics of MgNb2O6 ceramics due to magnesium oxide doping. Ceramics International, 2023, 49(20): 32946. |
[73] | WANG G, YAN H, HU Y F, et al. Microstructure evolution, crystal structure, Raman analysis, bond characteristics and enhanced microwave dielectric properties of Zn1-xCuxZrNb2O8 solid solution ceramics. Ceramics International, 2023, 49(22): 35264. |
[74] | YANG H Y, CHAI L, LIU Q, et al. Ionic substitution effects on the structure-property relationship of Zn0.5Ti0.5NbO4 microwave dielectric ceramics. Ceramics International, 2022, 48(17): 25292. |
[75] | WU F F, ZHOU D, DU C, et al. Temperature stable Sm(Nb1-xVx)O4 (0.0≤x≤0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. Journal of Materials Chemistry C, 2021, 9(31): 9962. |
[76] | LIU H T, WANG G, ZHANG H W. Correlation between crystal structure, bond characteristics, Raman vibrations, and improved microwave dielectric properties of high-performance Zn0.5Zr0.5NbO4 ceramics: first principle calculation and experiment. Ceramics International, 2023, 49(18): 30001. |
[77] | WANG J, ZELENYUK A, IMRE D, et al. Big data management with incremental K-means trees-GPU-accelerated construction and visualization. Informatics, 2017, 4(3): 24. |
[78] | ZHENG J Y, WANG S, GAO L H, et al. First-principlescalculations of crystal structure, electronic structure and optical properties of Ba2RETaO6 (RE = Y, La, Pr, Sm, Gd). Journal of Materials Science, 2018, 53(13): 9401. |
[79] | HUO J M, ZHONG C W, LI E Z, et al. New temperature stable YbTaO4 microwave dielectric ceramic with monoclinic structure. Ceramics International, 2022, 48(23): 34465. |
[80] | KIM E S, JEON C J. Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics. Journal of Advanced Dielectrics, 2011, 1(1): 127. |
[81] | YANG H Y, GUO Z X, XIONG Z, et al. Bond theory, vibrational spectroscopy, and dielectric responses of trirutile ATa2O6 (A = Mg, Ni) microwave ceramics. Ceramics International, 2024, 50(11): 19171. |
[82] | FANG Z X, YANG H Y, YANG H C, et al. Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceramics International, 2021, 47(15): 21388. |
[83] | SHI L, WANG X Y, PENG R, et al. Bond characteristics and microwave dielectric ceramic of rare-earth tantalite NdTaO4 ceramic. Ceramics International, 2022, 48(20): 30101. |
[84] | SHI L, WANG X Y, PENG R, et al. Effect of Mn2+ doping on the lattice and the microwave dielectric properties of MgTa2O6 ceramics. Ceramics International, 2022, 48(14): 20096. |
[85] | SHI L, WANG X Y, PENG R, et al. Crystallographic characteristics and microwave dielectric properties of Ni-modified MgTa2O6 ceramics. Ceramics International, 2021, 47(16): 22514. |
[86] | WU X H, JING Y L, LI Y X, et al. Novel tri-rutile Ni0.5Ti0.5TaO4 microwave dielectric ceramics: crystal structure chemistry, Raman vibration mode, and chemical bond characteristic in-depth studies. The Journal of Physical Chemistry C, 2022, 126(34): 14680. |
[87] | YANG H Y, ZHANG S R, CHEN Y W, et al. Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorganic Chemistry, 2019, 58(1): 968. |
[88] | LIU K, ZHANG H W, LIU C, et al. Relationship between microwave dielectric properties and structure of Ca2+-substituted ZnZrTa2O8 ceramics. Journal of Alloys and Compounds, 2023, 934: 167981. |
[89] | LIN Y J, WANG S F, LAI B C, et al. Densification, microstructure evolution, and microwave dielectric properties of Mg1-xCaxZrTa2O8 ceramics. Journal of the European Ceramic Society, 2017, 37(8): 2825. |
[90] | WANG G, ZHANG D N, LI J, et al. Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: crystal structure, microstructure evolution, Raman analysis and chemical bond theory. Journal of the European Ceramic Society, 2021, 41(6): 3445. |
[91] | GUO Y P, OHSATO H, KAKIMOTO K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. Journal of the European Ceramic Society, 2006, 26(10/11): 1827. |
[92] | LEI W, LU W Z, ZHU J H, et al. Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Materials Letters, 2007, 61(19/20): 4066. |
[93] | KAGOMIYA I, MATSUDA Y, KAKIMOTO K, et al. Microwave dielectric properties of YAG ceramics. Ferroelectrics, 2009, 387(1): 1. |
[94] | FU Z F, LIU P, MA J L, et al. Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). Journal of the European Ceramic Society, 2016, 36(3): 625. |
[95] | YANG J, PANG J B, LUO X F, et al. Phase structure, bond features, and microwave dielectric characteristics of Ruddlesden- Popper type Sr2TiO4 ceramics. Materials, 2023, 16(14): 5195. |
[96] | LI H, XIANG R, CHEN X Q, et al. Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic. Ceramics International, 2020, 46(4): 4235. |
[97] | KIM H T, BYUN J D, KIM Y. Microstructure and microwave dielectric properties of modified zinc titanates (II). Materials Research Bulletin, 1998, 33(6): 975. |
[98] | WANG Y J, LI J, FANG W S, et al. A novel ultra-high Q microwave dielectric ceramic ZnMgTiO4 with spinel structure. Ceramics International, 2023, 49(22): 35420. |
[99] | GEORGE S, SEBASTIAN M T. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics. Journal of the American Ceramic Society, 2010, 93(8): 2164. |
[100] | GUO H H, FU M S, ZHOU D, et al. Design of a high-efficiency and- gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Applied Materials & Interfaces, 2021, 13(1): 912. |
[101] | LIU K, SHI L, WANG X Y, et al. Li+ enrichment to improve the microwave dielectric properties of Li2ZnTi3O8 ceramics and the relationship between structure and properties. Journal of the European Ceramic Society, 2023, 43(4): 1483. |
[102] | JOVIC N, ANTIC B, KREMENOVIC A, et al. Cation ordering and order-disorder phase transitionin co-substituted Li4Ti5O12 spinels. Physica Status Solidi (a), 2003, 198(1): 18. |
[103] | TANG Y, SHEN S Y, LI J, et al. Characterization of structure and chemical bond in high-Q microwave dielectric ceramics LiM2GaTi2O8 (M = Mg, Zn). Journal of the European Ceramic Society, 2022, 42(11): 4573. |
[104] | QING Z J, LIU A, DUAN S M, et al. Structure, chemical bonding characteristics and microwave dielectric properties of Li5Mg3Ti2O9F ceramic with low sintering temperature. Ceramics International, 2024, 50(9): 15195. |
[105] | LOWNDES R, AZOUGH F, CERNIK R, et al. Structures and microwave dielectric properties of Ca(1-x)Nd2x/3TiO3 ceramics. Journal of the European Ceramic Society, 2012, 32(14): 3791. |
[106] | YOSHIDA M, HARA N, TAKADA T T T, et al. Structure and dielectric properties of (Ca1-xNd2x/3)TiO3. Japanese Journal of Applied Physics, 1997, 36: 6818. |
[107] | XIONG Z, TANG B, LUO F C, et al. Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. Journal of Alloys and Compounds, 2020, 835: 155249. |
[108] | YANG H Y, ZHANG S R, YANG H C, et al. Structural evolution and microwave dielectric properties of x. Inorganic Chemistry, 2018, 57(14): 8264. |
[109] | HU Z C, LI E Z, YANG H C, et al. Ionic substitution effects on the crystal structure and microwave dielectric properties of rutile Zn0.15Nb0.3Ti0.55O2 ceramics. Journal of Materials Science: Materials in Electronics, 2023, 35(1): 15. |
[110] | LIU Y, CHENG Z L, GAN L, et al. Microwave dielectric properties and sintering behavior of a novel low-cost lightweight, middle-εr Na2Ti6O13 ceramics. Ceramics International, 2024, 50(1): 2103. |
[1] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[2] | 唐莹, 李洁, 相怀成, 方维双, 林慧兴, 杨俊峰, 方亮. Rattling效应: 一种影响微波介质陶瓷谐振频率温度系数的新机制[J]. 无机材料学报, 2025, 40(6): 656-666. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 杨燕, 张发强, 马名生, 王墉哲, 欧阳琪, 刘志甫. 基于CuO-TiO2-Nb2O5复合氧化物烧结助剂的ZnAl2O4陶瓷低温烧结研究[J]. 无机材料学报, 2025, 40(6): 711-718. |
[7] | 黄子鹏, 贾文晓, 李玲霞. (Ti0.5W0.5)5+掺杂MgNb2O6陶瓷的晶体结构与太赫兹介电性能[J]. 无机材料学报, 2025, 40(6): 647-655. |
[8] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[9] | 赵凯旋, 刘文鹏, 丁守军, 窦仁勤, 罗建乔, 高进云, 孙贵花, 任浩, 张庆礼. 熔融法制备Nd:YLF原料及其晶体生长和性能研究[J]. 无机材料学报, 2025, 40(5): 529-535. |
[10] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[11] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[12] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[13] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[14] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[15] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||