无机材料学报

• 研究论文 •    

Rattling效应:一种影响微波介质陶瓷谐振频率温度系数的新机制

唐莹1, 李洁1, 相怀成1, 方维双1,2, 林慧兴2, 杨俊峰3, 方亮1   

  1. 1.桂林理工大学材料科学与工程学院,有色金属及材料加工新技术教育部重点实验室,广西光电材料与器件重点实验室,桂林 541004;
    2.中国科学院上海硅酸盐研究所,无机功能材料与器件重点实验室,上海 200050;
    3.广州天极电子科技股份有限公司,广州 510288
  • 收稿日期:2024-12-18 修回日期:2025-02-07
  • 通讯作者: 李洁,副教授. E-mail: jielee@glut.edu.cn; 方亮,教授. E-mail: fanglianggl001@aliyun.com
  • 作者简介:唐莹(1988-),女,博士,教授. E-mail: tangyinggl001@aliyun.com
  • 基金资助:
    广西科技计划项目(2024GXNSFFA010013, AD24010021); 国家自然科学基金项目(52362017)

Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics

TANG Ying1, LI Jie1, XIANG Huaicheng1, FANG Weishuang1,2, LIN Huixing2, YANG Junfeng3, FANG Liang1   

  1. 1. Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China;
    2. Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    3. Aurora Technologies Co. Ltd, Guangzhou 510288, China
  • Received:2024-12-18 Revised:2025-02-07
  • Contact: LJ Jie, Associate Professor. E-mail: jielee@glut.edu.cn; FANG Liang, Professor. E-mail: fanglianggl001@aliyun.com
  • About author:TANG Ying (1988-), female, PhD, Professor. E-mail: tangyinggl001@aliyun.com
  • Supported by:
    Natural Science Funds of Guang Xi Province (2024GXNSFFA010013, AD24010021); National Natural Science Foundation of China (52362017)

摘要: 微波介质陶瓷是5G/6G通信技术中关键的基础材料,具有高品质因数(Q×f)、低介电常数(εr)以及近零谐振频率温度系数(τf)的材料逐渐成为研究与开发的重点。然而,绝大多数低εr材料往往具有较大负的τf值。本文首先系统概述了影响τf的经典机制,包括离子极化率稀释机制、相变机制、晶胞体积机制、氧多面体畸变度、键能与键性以及键价等结构因素。随后,详细介绍了本团队近期在无相变的立方正反石榴石体系中观察到的τf异常变化现象,提出“Rattling”效应是一种影响微波介质陶瓷谐振频率温度系数的新机制。具有高配位数且弱化学键合的“Rattling”阳离子是影响材料整体微波介电极化和损耗的主要因素,它不仅增大离子极化率和介电常数,还导致τf正向偏移,同时降低Q×f值。该机制在不同材料体系中得到验证与应用。本文引入了总离子极化偏差的加权函数新概念,用于评估整个分子“Rattling”和“Compressed”效应对εr的影响。提出了离子极化率温度系数ταm新概念并可以定量化计算,从而将影响介电常数温度系数τε值正负和大小的因素简化为εrταm和线膨胀系数αL之间的关系。

关键词: 微波介质陶瓷, Rattling效应, τf影响机制, 离子极化率温度系数ταm, 总离子极化偏差的加权函数

Abstract: Microwave dielectric ceramics are the key basic materials of 5G/6G communication technology, with particular emphasis on the materials that exhibit a high quality factor (Q×f), low dielectric constant (εr) and near-zero temperature coefficient of resonant frequency (τf). However, most low-εr materials tend to have a significantly negative τf value. This paper provides a systematic overview of the classical ionic polarizability dilution mechanism and phase transition mechanism, along with the structural factors affecting τf, such as unit cell volume mechanism, oxygen polyhedron distortion, bond energy and bond ionicity, and bond valence. Subsequently, the anomalous changes in τf in the cubic normal and inverse garnet system without phase transition are described in detail. The “Rattling” effect is introduced as a novel mechanism affecting the τf of microwave dielectric ceramics. Cations involved in “Rattling”, characterized by high coordination and weak chemical bonds, are the primary factors affecting the overall microwave dielectric polarization and loss of the material. This phenomenon results in an increase in ionic polarizability and εr, a forward shift in τf and a reduction in Q×f value, which has been verified and applied in many different material systems. Furthermore, the introduction of a weighted function for total ion polarization deviation serves to evaluate the impact of the entire molecule's “Rattling” and “Compressed” effects on εr. A novel concept of temperature coefficient of ionic polarizability ταm is also proposed, allowing for quantitatively calculation. This simplifies the factors that affect the positive and negative of dielectric constant temperature coefficient τε, by relating it to εr, ταm and linear expansion coefficient αL.

Key words: microwave dielectric ceramics, Rattling effect, τf influence mechanism, temperature coefficient of ionic polarizability, weighting function of the total ion polarizability deviation