[1] 周济, 李龙土, 熊小雨. 我国电子陶瓷技术发展的战略思考. 中国工程科学, 2020, 22(5): 20. [2] DING Y H, LIU L, YANG Z J,et al. Structure and microwave dielectric characteristics of Hf1-xTixO2 ceramics. Journal of the American Ceramic Society, 2022, 105(2): 1127. [3] 闻立群, 王亦菲, 李晖, 等. 主要国家和地区5G发展战略举措及对我国的启示. 通信世界, 2021, 8: 28. [4] HILL M D, CRUICKSHANK D B, MACFRALANE I A.Perspective on ceramic materials for 5G wireless communication systems.Applied Physics Letters, 2021, 118(12): 120501. [5] ZURMUHLEN R, PETZELT J, KAMBA S,et al. Dielectric-spectroscopy of Ba(B'1/2B''1/2)O3 complex perovskite ceramics-correlations between ionic parameters and microwave dielectric properties. I. infrared reflectivity study (1012-1014 Hz). Journal of Applied Physics, 1995, 77(10): 5341. [6] BOSMAN A J, HAVINGA E E.Temperature dependence of dielectric constants of cubic ionic compounds.Physical Review, 1963, 129(4): 1593. [7] REANEY I M, IDDLES D.Microwave dielectric ceramics for resonators and filters in mobile phone networks.Journal of the American Ceramic Society, 2006, 89(7): 2063. [8] HARROP P J.Temperature coefficients of capacitance of solids.Journal of Materials Science, 1969, 4: 370. [9] COCKBAIN A G, HARROP P J.The temperature coefficient of capacitance.Journal of Physics D Applied Physics, 1968, 1(9): 1109. [10] WISE P L, REANEY I M, LEE W E,et al. Tunability of τf in perovskites and related compounds. Journal of Materials Research, 2002, 17(8): 2033. [11] YANG X, CHEN X M, LIU X Q,et al. Microstructures and microwave dielectric characteristics of CaRAlO4(R = Nd, Sm, Y) ceramics with tetragonal K2NiF4 structure. Journal of the American Ceramic Society, 2004, 87(11): 2143. [12] FAN X C, CHEN X M, LIU X Q.Structural Dependence of Microwave Dielectric Properties of SrRAlO4 (R = Sm, Nd, La) Ceramics: Crystal Structure Refinement and Infrared Reflectivity Study.Chemistry Of Materials, 2008, 20(12): 4092. [13] LIU B, LI L, LIU X Q,et al. Structural evolution of SrLaAl1-x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. Journal of Materials Chemistry C, 2016, 4(21): 4684. [14] COLLA E L, REANEY I M, SETTER N.Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity.Journal of Applied Physics, 1993, 74(5): 3414. [15] REANEY I M, COLLA E L E, SETTER N. Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor.Japanese Journal of Applied Physics, 1994, 33(7R): 3984. [16] REANEY I M, WISE P L, UBIC R,et al. On the temperature coefficient of resonant frequency in microwave dielectrics. Philosophical Magazine, 2001, 81(2): 501. [17] WISE P L, REANEY I M, LEE W E,et al. Structure-microwave property relations in (SrxCa1-x)n+1TinO3n+1. Journal of the European Ceramic Society, 2001, 21(10-11): 1723. [18] ZHOU D, RANDALL C A, WANG H,et al. Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 microwave dielectric ceramics. Journal of the American Ceramic Society, 2010, 93(8): 2147. [19] DU K, YIN C Z, GUO Y B,et al. Phase transition and permittivity stability against temperature of CaSn1-xTixGeO5 ceramics. Journal of the European Ceramic Society, 2022, 42(1): 147. [20] WU F F, ZHOU D, DU C.Design of a Sub-6 GHz dielectric resonatorantenna with novel temperature-stabilized (Sm1-xBix)NbO4 (x = 0-0.15) microwave dielectric ceramics. ACS Applied Materials & Interfaces, 2022, 14(5): 7030. [21] CHENG K, LI C C, YIN C Z,et al. Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3-xSrx(VO4)2 solid solution. Journal of the European Ceramic Society, 2019, 39(13): 3738. [22] YIN C Z, YIN Y H, DU K, Fabrication of high-efficiency dielectric patch antennas from temperature-stable Sr3-xCaxV2O8 microwave dielectric ceramic. Journal of the European Ceramic Society, 2023, 43(4): 1492. [23] LEE H J, HONG K S, KIM S J,et al. Dielectric properties of MNb2O6 compound (where M = Ca, Mn, Co, Ni, OR Zn). Materials Research Bulletin, 1997, 32(7): 847. [24] LEI W, ZOU Z Y, CHEN Z H,et al. Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratio. Journal of the American Ceramic Society, 2018, 101(1): 25. [25] KIM E S, CHOI W.Effect of phase transition on the microwave dielectric properties of BiNbO4.Journal of the European Ceramic Society, 2006, 26(10): 1761. [26] JO H J, KIM J S, KIM E S.Microwave dielectric properties of MgTiO3-based ceramics.Ceramics International, 2015, 41: S530. [27] CHEN J Q, FANG W S, AO L Y,et al. Structure and chemical bond characteristics of two low-εr microwave dielectric ceramics LiBO2(B = Ga, In) with opposite τf. Journal of the European Ceramic Society, 2021, 41(6): 3452. [28] ZHANG J Y, LI J, SUN Y H,et al. Densification, microwave dielectric properties and rattling effect of LiYbO2 ceramics with low εr and anomalous positive τf. Journal of the European Ceramic Society, 2022, 42(16): 7455. [29] KANG D H, KIM E S.Microwave dielectric properties of rutile (Zn1/3Nb2/3)0.40(Ti1-xSnx)0.60O2(0.15 ≤ x ≤ 0.30) ceramics. Ceramics International, 2008, 34(4): 889. [30] KIM E S, KANG D H.Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1-xO2(B5+ = Nb, Ta) ceramics. Ceramics International, 2008, 34(4): 883. [31] KIM E S, KANG D H.Microwave dielectric properties of (A2+1/3B5+2/3)0.5Ti0.5O2 (A2+= Zn, Mg, B5+= Nb, Ta) ceramics.IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2007, 55(5): 1069. [32] CHOI J W, DOVER R B, Correlation between temperature coefficient of resonant frequency and tetragonality ratio.Journal of the American Ceramic Society, 2006, 89(3): 1144. [33] LIAO Q, LI L X, REN X,et al. New low-loss microwave dielectric material ZnTiNbTaO8. Journal of the American Ceramic Society, 2011, 94(10): 3237. [34] RAMARAO S D, MURTHY V R K. Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics.Scripta Materialia, 2013, 69(3): 274. [35] LIAO Q, LI L X.Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study.Dalton Transactions, 2012, 41(23): 6963. [36] XIA W S, LI L X, NING P F,et al. Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1-xNbx)2O6 ceramics. Journal of the American Ceramic Society, 2012, 95(8): 2587. [37] MA X M, XU Z, TIAN H R,et al. Effect of (Zn1/3Nb2/3)4+ co-substitution on the microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. Ceramics International, 2022, 48(6): 7441. [38] LI H, CHEN X, XIANG Q,et al. Structure, bond characteristics and Raman spectra of CaMg1-xMnxSi2O6 microwave dielectric ceramics. Ceramics International, 2019, 45(11): 14160. [39] PASCHOA C W A,MOREIRA R L,SURENDRAN K P,et al. Infrared reflectivity and intrinsic dielectric behavior of RETiTaO6(RE = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) microwave ceramics. Journal of Materials Research, 2005, 20(5): 1164. [40] PARK H S, YOON K H, KIM E S.Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1-xCax)[Fe0.5(Nb1-yTay)0.5]O3. Journal of the American Ceramic Society, 2001, 84(1): 99. [41] YOON K H, KIM W S, KIM E S.Dependence of the octahedral bond valence on microwave dielectric properties of Ca1-xSm2x/3TiO3 ceramics. Materials Science and Engineering B, 2003, 99(1-3): 112. [42] PARK H S, YOON K H, KIM E S.Effect of bond valence on microwave dielectric properties of complex perovskite ceramics.Materials Chemistry and Physics, 2003, 79(2-3): 181. [43] CHO Y S, YOON K H, LEE B D,et al. Understanding microwave dielectric properties of Pb-based complex perovskite ceramics via bond valence. Ceramics International, 2004, 30(8): 2247. [44] LUFASO M W.Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM2O9 (M =Mg, Ni, Zn; M= Nb, Ta) perovskites.Chemistry of Materials, 2004, 16(11): 2148. [45] ZHANG H, FANG L, DRONSKOWSKI R,et al. Some A6B5O18 cation-deficient perovskites in the BaO-La2O3-TiO2-Nb2O5 system. Journal of Solid State Chemistry, 2004, 177(11): 4007. [46] ZHANG H, FANG L, ELSEBROCK R,et al. Crystal structure and microwave dielectric properties of a New A6B5O18-type cation-deficient perovskite Ba3La3Ti4NbO18. Materials Chemistry and Physics, 2005, 93(2-3): 450. [47] KIM E S, CHUN B S, FREER R,et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4(A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. Journal of the European Ceramic Society, 2010, 30(7): 1731. [48] KIM E S, JEON C J, CLEM P G.Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) Ceramic.Journal of the American Ceramic Society, 2012, 95(9): 2934-2938. Journal of the European Ceramic Society, 2007, 27(8-9): 3063. [49] YOON S H, KIM D W, CHO S Y,et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society, 2006, 26(10-11): 2051. [50] CHOI G K, KIM J R, YOON S H,et al. Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compound. Journal of the European Ceramic Society, 2007, 27(8-9): 3063. [51] 严康, 高兆芬, 卞建江. 钨酸盐类陶瓷微波介电性能. 硅酸盐学报, 2006, 34(2): 36. [52] NEELAKANTAN U A, KALATHIL S E, Ratheesh R.Structure and microwave dielectric properties of ultralow-temperature cofirable BaV2O6 ceramics.European Journal of Inorganic Chemistry, 2015, 2015(2): 305. [53] TANG Y, ZHANG Z W, LI J,et al. A3Y2Ge3O12(A = Ca, Mg): Two novel microwave dielectric ceramics with contrasting τf and Q×f. Journal of the European Ceramic Society, 2020, 40(12): 3989. [54] DUNITZ J D, ORGEL L E.Stereochemistry of ionic solids.Adv Inorg Chem Radiochemistry, 1960, 2(1): 1. [55] SHANNON R D.Dielectric polarizabilities of ions in oxides and fluorides.Journal of Appl ied Physics, 1993, 73(1): 348. [56] 唐莹. 石榴石型低介电常数微波介质陶瓷制备与性能. 北京: 北京科技大学博士学位论文, 2021. [57] 唐莹, 相怀成, 李洁, 等. Ca3-xMgxYb2Ge3O12(0 ≤ x ≤ 3)石榴石的A位Rattling效应与微波介电性能. 硅酸盐学报, 2023, 51(4): 1. [58] TANG Y, LI H, LI J,et al. Relationship between Rattling Mg2+ ions and anomalous microwave dielectric behavior in Ca3-xMg1+xLiV3O12 ceramics with garnet structure. Journal of the European Ceramic Society, 2021, 41(15): 7697. [59] LIU M X, LI J, TANG Y.Tunability ofτf in garnet-structured Y3Ga5O12 microwave dielectric ceramics. Journal of the European Ceramic Society, 2021, 41(15): 7711. [60] YANG Y, LI J, TANG Y,et al. Rattling effects on microwave dielectric properties of Ca3TiBGe3O12(B = Mg, Zn) garnets. Journal of the European Ceramic Society, 2022, 42(11): 4566. [61] YANG Y, LI J, TANG Y,et al. Effects of ionic coordination bonding on microwave dielectric properties of Y2CaBGa4O12(B = Zr, Sn) Garnets. ACS Applied Electronic Materials, 2022, 4(7): 3512. [62] GU X L, TANG Y, CHEN J Q,et al. Tuning microwave dielectric properties of low-temperature sintered Ca1-x(Li0.5Eu0.5)xMoO4, 2025, 45(5): 117149. [63] XU L, FANG W S, TANG Y,et al. Crystal structure evolution, bond characteristics and tunable microwave dielectric properties of (Ce1-xCax)(Nb1-xWx)O4 ceramics. Journal of the European Ceramic Society, 2024, 44(7): 4657. [64] WANG S J, FANG W S, WU D F,et al. Two K20 microwave dielectric ceramics SrLnAlO4(Ln = Eu, Gd) with near-zero τf and contrasting Q×f. Journal of the European Ceramic Society, 2024, 44(11): 6470. [65] MENG K Y, WU D F, WANG S J,et al. Tuning εr and τf by the combined effects of rattling RE3+ and compressed Ca2+ at the A-site in microwave dielectric ceramics CaREAlO4(RE = Eu, Ho, Er, Yb). Ceramics International, 2024, 50(15): 26792. [66] LI F H, TANG Y, LI J,et al. Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9(A = Ba, Sr) ceramics. Journal of the European Ceramic Society, 2021, 41(7): 4153. [67] SUN Y, XIANG H C, TANG Y,et al. Constructing the cationic rattling effect to realize the adjustability of the temperature coefficient in Nd2-xSmxO3 microwave dielectric ceramics. Journal of the European Ceramic Society, 2024, 44(5): 2859. [68] SUN Y, WU J T, TANG Y,et al. Effects of ion polarizability and oxygen vacancy on microwave dielectric properties of fluorite-structured Ce1-xCaxO2-x. Journal of the American Ceramic Society, 2024, 107(2): 1148. [69] JIA Y Q, LUO W K, LI L,et al. MSO4(M = Ca, Sr, Ba) microwave dielectric ceramics with low dielectric constant. Journal of the American Ceramic Society, 2023, 106(2): 1250. [70] WANG X, ZHU XL, LI L,et al. Structure evolution and adjustment of τf in (Ba, Sr)HfO3 and (Sr, Ca)HfO3 microwave dielectric ceramics. Journal of the American Ceramic Society, 2024, 107(1): 285. [71] JIANG Y, WU G F, MAO M M, et al. Deeper insights into dodecahedron distortion and microwave dielectric properties of Y3-xRxAl(Oct)2Al(Tet)3-xSixO12 (x = 0.1-0.5; R = Mg, Ca) garnet-type ceramics. Ceramics International, 2023, 49(14): 23334. |