无机材料学报 ›› 2024, Vol. 39 ›› Issue (10): 1143-1150.DOI: 10.15541/jim20240142 CSTR: 32189.14.10.15541/jim20240142
所属专题: 【能源环境】光催化(202412); 【能源环境】污染物催化去除(202506)
李秋实1(
), 殷广明1,2(
), 吕伟超1, 王怀尧2, 李婧琳2, 杨红光2, 关芳芳2
收稿日期:2024-03-22
修回日期:2024-05-31
出版日期:2024-10-20
网络出版日期:2024-10-09
通讯作者:
殷广明, 正高级实验师. E-mail: qdyingm@163.com作者简介:李秋实(1993-), 男, 硕士. E-mail: hcgz116@163.com
基金资助:
LI Qiushi1(
), YIN Guangming1,2(
), LÜ Weichao1, WANG Huaiyao2, LI Jinglin2, YANG Hongguang2, GUAN Fangfang2
Received:2024-03-22
Revised:2024-05-31
Published:2024-10-20
Online:2024-10-09
Contact:
YIN Guangming, professor. E-mail: qdyingm@163.comAbout author:LI Qiushi (1993-), male, Master. E-mail: hcgz116@163.com
Supported by:摘要:
制备碱金属掺杂的g-C3N4在g-C3N4半导体光催化材料研究中属于一个重要分支。本研究采用溶液合成、煅烧和溶剂热反应方法制备了Na+掺杂的g-C3N4样品(Na+/g-C3N4), 通过不同检测手段确定了Na+在g-C3N4中的负载位置和光电性能, 考察了样品的形貌、比表面积及孔径随溶剂热反应时间延长的变化规律。 结果表明:Na+负载位置和表面生成的C-O-基团增强了g-C3N4材料的物理和化学吸附性能, Na+/g-C3N4对亚甲基蓝(MB)的吸附率最高可达到93.25%; Na+负载位置对g-C3N4的π共轭体系的电子分布产生影响, 进而改变了材料的禁带宽度(Eg)、导(价)带位置和光生载流子分离效率及传输速率; 在可见光降解过程中, 由于MB的自身光敏性和在Na+/g-C3N4样品表面的强吸附性, MB和Na+/g-C3N4样品构建了独特的光敏-光催化降解体系, MB不仅通过光敏自降解, 还在Na+/g-C3N4协同下进行了光催化降解。在pH 6.0条件下, MB和Na+/g-C3N4光催化体系对MB的最高降解率可达96.40%。
中图分类号:
李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150.
LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue[J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150.
图6 样品对MB的光催化降解率(a)和4-Na+/g-C3N4光催化循环测试结果(b)
Fig. 6 Photocatalytic degradation rates of samples on MB (a) and photocatalytic recycling testing of 4-Na+/g-C3N4 (b)
图9 捕获实验效果(a)和光催化降解机理示意图(b)
Fig. 9 Photodegradation efficiencies with different capture agents (a) and schematic diagram of photodegradation process (b)
| [1] | ALAGHMANDFARD A, GHANDI K. A comprehensive review of graphitic carbon nitride (g-C3N4)-metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nanomaterials, 2022, 12(2): 294. |
| [2] | ZHAO B, ZHONG W, CHEN F, et al. High-crystalline g-C3N4 photocatalysts: synthesis, structure modulation, and H2-evolution application. Chinese Journal of Catalysis, 2023, 52: 127. |
| [3] | KHARLAMOV A, BONDARENKO M, KHARLAMOVA G, et al. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O. Journal of Solid State Chemistry, 2016, 241: 115. |
| [4] | WANG Y, LI Y, ZHAO J, et al. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 2019, 44(2): 618. |
| [5] | JING L Q, XU Y G, XIE M, et al. Cyano-rich g-C3N4 in photochemistry: design, applications, and prospects. Small, 2024, 20: 2304404. |
| [6] | RUAN L W, XU G H, GU L N, et al. The physical properties of Li-doped g-C3N4 monolayer sheet investigated by the first-principles. Materials Research Bulletin, 2015, 66: 156. |
| [7] | LIU G, YAN S, SHI L, et al. The improvement of photocatalysis H2 evolution over g-C3N4 with Na and cyano-group Co-modification. Frontiers in Chemistry, 2019, 7: 639. |
| [8] | JIANG J, CAO S, HU C, et al. A comparison study of alkali metal doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2017, 38(12): 1981. |
| [9] | ISMAEL M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 2020, 846(1): 15446. |
| [10] | ZHENG J F, XU Z, XIN S T, et al. Low-temperature molten salt synthesis of Na, K-codoped g-C3N4 Fenton-like catalyst with remarkable TCH degradation performance in a wide pH range. Materials Letters, 2022, 325: 132912. |
| [11] | MORI K, TATSUMI D, IWAMOTO T, et al. Ruthenium(ii) bipyridine nano C3N4 hybrids: tunable photochemical properties by using exchangeable alkali metal cations. Chemistry-An Asian Journal, 2018, 13(10): 1348. |
| [12] | SANO T, TSUTSUI S, KOIKE K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. Journal of Materials Chemistry A, 2013, 1(21): 6489. |
| [13] | KUMAR A, KASHYAP S, SHARMA M, et al. Tuning the surface and optical properties of graphitic carbon nitride by incorporation of alkali metals (Na, K, Cs and Rb): effect on photocatalytic removal of organic pollutants. Chemosphere, 2022, 287: 131988. |
| [14] | XU Y G, GE F Y, CHEN Z G, et al. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance. Applied Surface Science, 2019, 469: 739. |
| [15] | SUDRAJAT H. A one-pot, solid-state route for realizing highly visible light active Na-doped g-C3N4 photocatalysts. Journal of Solid State Chemistry, 2018, 257: 26. |
| [16] | XU Y, GONG Y, REN H, et al. In situ structural modification of graphitic carbon nitride by alkali halides and influence on photocatalytic activity. RSC Advances, 2017, 7(52): 32592. |
| [17] | LIU Y M, ZHANG X, WANG J P, et al. Preparation of luminescent graphitic C3N4 NS and their composites with RGO for property controlling. RSC Advances, 2016, 6(113): 112581. |
| [18] | GUAN Y H, HU S Z, GU G Z, et al. Alkali hydrothermal treatment to tynthesize hydroxyl modified g-C3N4 with outstanding photocatalytic phenolic compounds oxidation ability. Nano: Brief Reports and Reviews, 2024, 15(7): 1793. |
| [19] | ZHANG L S, DING N, HASHIMOTO M, et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Research, 2018, 11(4): 2295. |
| [20] | XU J Y, LI Y X, PENG S Q, et al. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Physical Chemistry Chemical Physics, 2013, 15(20): 7657. |
| [21] | HU C, TSAI W F, WEI W H, et al. Hydroxylation and sodium intercalation on g-C3N4 for photocatalytic removal of gaseous formaldehyde. Carbon, 2021, 175: 467. |
| [22] | WANG X L, FANG W Q, WANG H F, et al. Surface hydrogen bonding can enhance photocatalytic H2 evolution efficiency. Journal of Materials Chemistry A, 2013, 1(45): 14089. |
| [23] | LI Y X, XU H, OUYANG S, et al. In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visible- light irradiation. Journal of Materials Chemistry A, 2016, 4(8): 2943. |
| [24] | GAO H L, YAN S C, WANG J J, et al. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Physical Chemistry Chemical Physics, 2013, 15(41): 18077. |
| [25] | SUN Z X, FISCHER J M T A, LI Q, et al. Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Applied Catalysis B: Environmental, 2017, 216: 146. |
| [26] | THOMMES M, KANEKO K, NEIMARK AV, et al. Physisorption of gases, three-dimensional graphene with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry, 2015, 87(10): 1051. |
| [27] | ZHANG Y J, MORI T, YE J H, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. Journal of the American Chemical Society, 2010, 132(18): 6294. |
| [28] | MAIA D L S, PEPE I, DA SILVA A F, et al. Visible-light-driven photocatalytic hydrogen production over dye-sensitized β-BiTaO4. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 243: 61. |
| [29] | CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206. |
| [1] | 江宗玉, 黄红花, 清江, 王红宁, 姚超, 陈若愚. 铝离子掺杂MIL-101(Cr)的制备及其VOCs吸附性能研究[J]. 无机材料学报, 2025, 40(7): 747-753. |
| [2] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
| [3] | 周阳阳, 张艳艳, 于子怡, 傅正钱, 许钫钫, 梁瑞虹, 周志勇. 通过Bi3+自掺杂增强CaBi4Ti4O15基陶瓷压电性能[J]. 无机材料学报, 2025, 40(6): 719-728. |
| [4] | 陈莉波, 盛盈, 伍明, 宋季岭, 蹇建, 宋二红. Na和O元素共掺杂氮化碳高效光催化制氢[J]. 无机材料学报, 2025, 40(5): 552-562. |
| [5] | 孙雨萱, 王政, 时雪, 史颖, 杜文通, 满振勇, 郑嘹赢, 李国荣. 缺陷偶极子热稳定性对Fe掺杂PZT陶瓷机电性能影响研究[J]. 无机材料学报, 2025, 40(5): 545-551. |
| [6] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
| [7] | 渠吉发, 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶. 掺杂改性NaYTiO4增强固体氧化物燃料电池阳极抗硫中毒性能[J]. 无机材料学报, 2025, 40(5): 489-496. |
| [8] | 穆浩洁, 张源江, 喻彬, 付秀梅, 周世斌, 李晓东. ZrO2掺杂Y2O3-MgO纳米复相陶瓷的制备及性能研究[J]. 无机材料学报, 2025, 40(3): 281-289. |
| [9] | 沈浩, 陈倩倩, 周渤翔, 唐晓东, 张媛媛. A位La/Sr共掺杂PbZrO3薄膜的制备及储能特性优化[J]. 无机材料学报, 2024, 39(9): 1022-1028. |
| [10] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
| [11] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
| [12] | 李家琪, 李小松, 李煊赫, 朱晓兵, 朱爱民. 暖等离子体合成过渡金属掺杂氧化锰析氧电催化剂[J]. 无机材料学报, 2024, 39(7): 835-844. |
| [13] | TAM YU Puy Mang, 徐愉, 高泉浩, 周海琼, 张振, 尹浩, 李真, 吕启涛, 陈振强, 马凤凯, 苏良碧. 掺铒CaF2、SrF2、PbF2晶体的光谱性能与团簇结构研究[J]. 无机材料学报, 2024, 39(3): 330-336. |
| [14] | 李宪珂, 张超逸, 黄林, 孙鹏, 刘波, 徐军, 唐慧丽. 高质量铟掺杂氧化镓单晶浮区法生长研究[J]. 无机材料学报, 2024, 39(12): 1384-1390. |
| [15] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||