[1] |
BHOWMICK S, SHIRZADIAN S, ALPAS A T. High-temperature tribological behavior of Ti containing diamond-like carbon coatings with emphasis on running-in coefficient of friction. Surface and Coatings Technology, 2022, 431: 127995.
|
[2] |
EPELOA J, REPETTO C E, GÓMEZ B J, et al. Resistivity humidity sensors based on hydrogenated amorphous carbon films. Materials Research Express, 2019, 6(2): 025604.
|
[3] |
ASLAN N, KURT M Ş, MEHMET KOÇ M. Morpho-structural and optoelectronic properties of diamond like carbon-germanium (DLC-Ge) composite thin films produced by magnetron sputtering. Optical Materials, 2022, 126: 112229.
|
[4] |
MEŠKINIS Š, GUDAITIS R, VASILIAUSKAS A, et al. Piezoresistive properties of diamond like carbon films containing copper. Diamond and Related Materials, 2015, 60: 20.
|
[5] |
TAKENO T, MIKI H, SUGAWARA T, et al. A DLC/W-DLC multilayered structure for strain sensing applications. Diamond and Related Materials, 2008, 17(4/5): 713.
|
[6] |
KOPPERT R, GOETTEL D, FREITAG-WEBER O, et al. Nickel containing diamond like carbon thin films. Solid State Sciences, 2009, 11(10): 1797.
|
[7] |
MEŠKINIS Š N, GUDAITIS R, ŠLAPIKAS K, et al. Giant negative piezoresistive effect in diamond-like carbon and diamond-like carbon-based nickel nanocomposite films deposited by reactive magnetron sputtering of Ni target. ACS Applied Materials & Interfaces, 2018, 10(18): 15778.
|
[8] |
MEŠKINIS Š, VASILIAUSKAS A, ŠLAPIKAS K, et al. Bias effects on structure and piezoresistive properties of DLC:Ag thin films. Surface and Coatings Technology, 2014, 255: 84.
|
[9] |
TAMULEVIČIUS S, MEŠKINIS Š, ŠLAPIKAS K, et al. Piezoresistive properties of amorphous carbon based nanocomposite thin films deposited by plasma assisted methods. Thin Solid Films, 2013, 538: 78.
|
[10] |
GUDAITIS R, MEŠKINIS Š, ŠLAPIKAS K, et al. Piezoresistive and electrical properties of Cr containing diamond-like carbon films. Surface and Coatings Technology, 2012, 211: 80.
|
[11] |
LEAL G, CARDOSO G W A, SOBRINHO S S A, et al. Electrical and structural characterization of Sn-DLC thin films for piezoresistive sensors. Procedia Engineering, 2014, 87: 120.
|
[12] |
TIBREWALA A, PEINER E, BANDORF R, et al. Longitudinal and transversal piezoresistive effect in hydrogenated amorphous carbon films. Thin Solid Films, 2007, 515(20/21): 8028.
|
[13] |
KOPPERT R, UHLIG S, SCHMID-ENGEL H, et al. Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films. Diamond and Related Materials, 2012, 25: 50.
|
[14] |
YAN C, GUO P, ZHOU J, et al. Dependence of piezoresistive behavior upon Cu content in Cu-DLC nanocomposite films. Diamond and Related Materials, 2023, 136: 109935.
|
[15] |
LI X, ZHANG D, LEE K R, et al. Effect of metal doping on structural characteristics of amorphous carbon system: a first- principles study. Thin Solid Films, 2016, 607: 67.
|
[16] |
JO Y J, ZHANG T F, SON M J, et al. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process. Applied Surface Science, 2018, 433: 1184.
|
[17] |
HE Y L, WU X H, LIN H Y, et al. Structure characteristics and piezoresistive effect of nc-Si:H films. Chinese Science Bulletin, 1995, 40(20): 1684.
|
[18] |
PETERSEN M, HECKMANN U, BANDORF R, et al. Me-DLC films as material for highly sensitive temperature compensated strain gauges. Diamond and Related Materials, 2011, 20(5/6): 814.
|
[19] |
ANDERSON P W. Absence of diffusion in certain random lattices. Physical Review, 1958, 109(5): 1492.
|
[20] |
WAN C, ZHANG X, VANACKEN J, et al. Electro- and magneto- transport properties of amorphous carbon films doped with iron. Diamond and Related Materials, 2011, 20(1): 26.
|
[21] |
TOKER D, AZULAY D, SHIMONI N, et al. Tunneling and percolation in metal-insulator composite materials. Physical Review B, 2003, 68(4): 041403.
|
[22] |
GRIMALDI C. Theory of percolation and tunneling regimes in nanogranular metal films. Physical Review B, 2014, 89(21): 214201.
|
[23] |
GRIMALDI C, RYSER P, STRÄSSLER S. Gauge factor enhancement driven by heterogeneity in thick-film resistors. Journal of Applied Physics, 2001, 90(1): 322.
|
[24] |
ZAHAB A, SPINA L, PONCHARAL P, et al. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Physical Review B, 2000, 62(15): 10000.
|
[25] |
FAN X, ELGAMMAL K, SMITH A D, et al. Humidity and CO2 gas sensing properties of double-layer graphene. Carbon, 2018, 127: 576.
|
[26] |
FARAHANI H, WAGIRAN R, HAMIDON M N. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors, 2014, 14(5): 7881.
|
[27] |
GAO X L, ZHANG X Z, WAN C H, et al. Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions. Applied Physics Letters, 2010, 97(21): 212101.
|