无机材料学报 ›› 2024, Vol. 39 ›› Issue (10): 1143-1150.DOI: 10.15541/jim20240142 CSTR: 32189.14.10.15541/jim20240142
李秋实1(), 殷广明1,2(
), 吕伟超1, 王怀尧2, 李婧琳2, 杨红光2, 关芳芳2
收稿日期:
2024-03-22
修回日期:
2024-05-31
出版日期:
2024-10-20
网络出版日期:
2024-10-09
通讯作者:
殷广明, 正高级实验师. E-mail: qdyingm@163.com作者简介:
李秋实(1993-), 男, 硕士. E-mail: hcgz116@163.com
基金资助:
LI Qiushi1(), YIN Guangming1,2(
), LÜ Weichao1, WANG Huaiyao2, LI Jinglin2, YANG Hongguang2, GUAN Fangfang2
Received:
2024-03-22
Revised:
2024-05-31
Published:
2024-10-20
Online:
2024-10-09
Contact:
YIN Guangming, professor. E-mail: qdyingm@163.comAbout author:
LI Qiushi (1993-), male, Master. E-mail: hcgz116@163.com
Supported by:
摘要:
制备碱金属掺杂的g-C3N4在g-C3N4半导体光催化材料研究中属于一个重要分支。本研究采用溶液合成、煅烧和溶剂热反应方法制备了Na+掺杂的g-C3N4样品(Na+/g-C3N4), 通过不同检测手段确定了Na+在g-C3N4中的负载位置和光电性能, 考察了样品的形貌、比表面积及孔径随溶剂热反应时间延长的变化规律。 结果表明:Na+负载位置和表面生成的C-O-基团增强了g-C3N4材料的物理和化学吸附性能, Na+/g-C3N4对亚甲基蓝(MB)的吸附率最高可达到93.25%; Na+负载位置对g-C3N4的π共轭体系的电子分布产生影响, 进而改变了材料的禁带宽度(Eg)、导(价)带位置和光生载流子分离效率及传输速率; 在可见光降解过程中, 由于MB的自身光敏性和在Na+/g-C3N4样品表面的强吸附性, MB和Na+/g-C3N4样品构建了独特的光敏-光催化降解体系, MB不仅通过光敏自降解, 还在Na+/g-C3N4协同下进行了光催化降解。在pH 6.0条件下, MB和Na+/g-C3N4光催化体系对MB的最高降解率可达96.40%。
中图分类号:
李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150.
LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue[J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150.
图6 样品对MB的光催化降解率(a)和4-Na+/g-C3N4光催化循环测试结果(b)
Fig. 6 Photocatalytic degradation rates of samples on MB (a) and photocatalytic recycling testing of 4-Na+/g-C3N4 (b)
图9 捕获实验效果(a)和光催化降解机理示意图(b)
Fig. 9 Photodegradation efficiencies with different capture agents (a) and schematic diagram of photodegradation process (b)
[1] | ALAGHMANDFARD A, GHANDI K. A comprehensive review of graphitic carbon nitride (g-C3N4)-metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nanomaterials, 2022, 12(2): 294. |
[2] | ZHAO B, ZHONG W, CHEN F, et al. High-crystalline g-C3N4 photocatalysts: synthesis, structure modulation, and H2-evolution application. Chinese Journal of Catalysis, 2023, 52: 127. |
[3] | KHARLAMOV A, BONDARENKO M, KHARLAMOVA G, et al. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O. Journal of Solid State Chemistry, 2016, 241: 115. |
[4] | WANG Y, LI Y, ZHAO J, et al. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 2019, 44(2): 618. |
[5] | JING L Q, XU Y G, XIE M, et al. Cyano-rich g-C3N4 in photochemistry: design, applications, and prospects. Small, 2024, 20: 2304404. |
[6] | RUAN L W, XU G H, GU L N, et al. The physical properties of Li-doped g-C3N4 monolayer sheet investigated by the first-principles. Materials Research Bulletin, 2015, 66: 156. |
[7] | LIU G, YAN S, SHI L, et al. The improvement of photocatalysis H2 evolution over g-C3N4 with Na and cyano-group Co-modification. Frontiers in Chemistry, 2019, 7: 639. |
[8] | JIANG J, CAO S, HU C, et al. A comparison study of alkali metal doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2017, 38(12): 1981. |
[9] | ISMAEL M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 2020, 846(1): 15446. |
[10] | ZHENG J F, XU Z, XIN S T, et al. Low-temperature molten salt synthesis of Na, K-codoped g-C3N4 Fenton-like catalyst with remarkable TCH degradation performance in a wide pH range. Materials Letters, 2022, 325: 132912. |
[11] | MORI K, TATSUMI D, IWAMOTO T, et al. Ruthenium(ii) bipyridine nano C3N4 hybrids: tunable photochemical properties by using exchangeable alkali metal cations. Chemistry-An Asian Journal, 2018, 13(10): 1348. |
[12] | SANO T, TSUTSUI S, KOIKE K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. Journal of Materials Chemistry A, 2013, 1(21): 6489. |
[13] | KUMAR A, KASHYAP S, SHARMA M, et al. Tuning the surface and optical properties of graphitic carbon nitride by incorporation of alkali metals (Na, K, Cs and Rb): effect on photocatalytic removal of organic pollutants. Chemosphere, 2022, 287: 131988. |
[14] | XU Y G, GE F Y, CHEN Z G, et al. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance. Applied Surface Science, 2019, 469: 739. |
[15] | SUDRAJAT H. A one-pot, solid-state route for realizing highly visible light active Na-doped g-C3N4 photocatalysts. Journal of Solid State Chemistry, 2018, 257: 26. |
[16] | XU Y, GONG Y, REN H, et al. In situ structural modification of graphitic carbon nitride by alkali halides and influence on photocatalytic activity. RSC Advances, 2017, 7(52): 32592. |
[17] | LIU Y M, ZHANG X, WANG J P, et al. Preparation of luminescent graphitic C3N4 NS and their composites with RGO for property controlling. RSC Advances, 2016, 6(113): 112581. |
[18] | GUAN Y H, HU S Z, GU G Z, et al. Alkali hydrothermal treatment to tynthesize hydroxyl modified g-C3N4 with outstanding photocatalytic phenolic compounds oxidation ability. Nano: Brief Reports and Reviews, 2024, 15(7): 1793. |
[19] | ZHANG L S, DING N, HASHIMOTO M, et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Research, 2018, 11(4): 2295. |
[20] | XU J Y, LI Y X, PENG S Q, et al. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Physical Chemistry Chemical Physics, 2013, 15(20): 7657. |
[21] | HU C, TSAI W F, WEI W H, et al. Hydroxylation and sodium intercalation on g-C3N4 for photocatalytic removal of gaseous formaldehyde. Carbon, 2021, 175: 467. |
[22] | WANG X L, FANG W Q, WANG H F, et al. Surface hydrogen bonding can enhance photocatalytic H2 evolution efficiency. Journal of Materials Chemistry A, 2013, 1(45): 14089. |
[23] | LI Y X, XU H, OUYANG S, et al. In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visible- light irradiation. Journal of Materials Chemistry A, 2016, 4(8): 2943. |
[24] | GAO H L, YAN S C, WANG J J, et al. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Physical Chemistry Chemical Physics, 2013, 15(41): 18077. |
[25] | SUN Z X, FISCHER J M T A, LI Q, et al. Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Applied Catalysis B: Environmental, 2017, 216: 146. |
[26] | THOMMES M, KANEKO K, NEIMARK AV, et al. Physisorption of gases, three-dimensional graphene with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry, 2015, 87(10): 1051. |
[27] | ZHANG Y J, MORI T, YE J H, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. Journal of the American Chemical Society, 2010, 132(18): 6294. |
[28] | MAIA D L S, PEPE I, DA SILVA A F, et al. Visible-light-driven photocatalytic hydrogen production over dye-sensitized β-BiTaO4. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 243: 61. |
[29] | CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206. |
[1] | 沈浩, 陈倩倩, 周渤翔, 唐晓东, 张媛媛. A位La/Sr共掺杂PbZrO3薄膜的制备及储能特性优化[J]. 无机材料学报, 2024, 39(9): 1022-1028. |
[2] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[3] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
[4] | 李家琪, 李小松, 李煊赫, 朱晓兵, 朱爱民. 暖等离子体合成过渡金属掺杂氧化锰析氧电催化剂[J]. 无机材料学报, 2024, 39(7): 835-844. |
[5] | TAM YU Puy Mang, 徐愉, 高泉浩, 周海琼, 张振, 尹浩, 李真, 吕启涛, 陈振强, 马凤凯, 苏良碧. 掺铒CaF2、SrF2、PbF2晶体的光谱性能与团簇结构研究[J]. 无机材料学报, 2024, 39(3): 330-336. |
[6] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
[7] | 苏楠, 邱介山, 王治宇. 高容量氟掺杂碳包覆纳米硅负极材料: 气相氟化法制备及其储锂性能[J]. 无机材料学报, 2023, 38(8): 947-953. |
[8] | 王新玲, 周娜, 田亚文, 周明冉, 韩静茹, 申远升, 胡执一, 李昱. SnS2/ZIF-8衍生二维多孔氮掺杂碳纳米片复合材料的锂硫电池性能研究[J]. 无机材料学报, 2023, 38(8): 938-946. |
[9] | 李光兰, 王天宇, 刘一辰, 路中发. 片状NiFeCo-LDH-Ti6C3.75复合催化剂的制备及电催化析氧性能[J]. 无机材料学报, 2023, 38(7): 823-829. |
[10] | 李乾利, 黎乃鑫, 李育成, 刘慎业, 程帅, 杨光, 任宽, 王峰, 赵景泰. 辐射光致发光材料及其应用研究进展[J]. 无机材料学报, 2023, 38(7): 731-749. |
[11] | 孔国强, 冷明哲, 周战荣, 夏池, 沈晓芳. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-662. |
[12] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[13] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
[14] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[15] | 王志强, 吴济安, 陈昆峰, 薛冬峰. 大尺寸Er,Yb:YAG单晶的生长及其性能[J]. 无机材料学报, 2023, 38(3): 329-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||