[1] |
LAI Y Q, DU S L, AI L H , et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates. Int.[J]. Hydrogen. Energ., 2015,40(38):13039-13049.
|
[2] |
ROY P, SRIVASTAVA S K . Nanostructured anode materials for lithium ion batteries. J. Mater. Chem.A, 2015,3(6):2454-2484.
|
[3] |
BEHM M, IRVINE T S . Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries. Electrochim.Acta, 2002,47(11):1727-1738.
|
[4] |
NITHYADHARSENI P, REDDY M V, NALINI B , et al. Sn-based intermetallic alloy anode materials for the application of lithium ion batteries. Electrochim.Acta, 2015,161(1):261-268.
|
[5] |
SHARMA Y, SHARMA N, RAO G V S , et al. Studies on nano-CaO·SnO2 and nano-CaSnO3 as anodes for Li-ion batteries. Chem.Mater. 2016,20(21):6829-6839.
|
[6] |
UI K, KIKUCHI S, KADOMA Y , et al. Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries.[J]. Power Sources, 2009,189(1):224-229.
|
[7] |
TRAHEY L, VAUGHEY J T, KUNG H H , et al. High-capacity microporous Cu6Sn5-Sn anodes for Li-ion batteries.[J]. Electrochem. Soc., 2009,156(5):A385-A389.
|
[8] |
JAVADIAN S, KAKEMAM J, GHARIBI H , et al. Flower-like architecture of CoSn4 nano structure as anode in lithium ion batteries. Int.[J]. Hydrogen Energ., 2017,42:13126-13149.
|
[9] |
SENGUPTA S, PATRA A, AKHTAR M , et al. 3D microporous Sn-Sb-Ni alloy impregnated Ni foam as high-performance negative electrode for lithium-ion batteries.[J]. Alloys Compd., 2017,705:290-300.
|
[10] |
ZHANG H, ZHANG M R, ZHANG M L , et al. Hybrid aerogel-derived Sn-Ni alloy immobilized within porous carbon/ graphene dual matrices for high-performance lithium storage.[J]. Colloid Interf. Sci., 2017,501:267-272.
|
[11] |
YE Y, WU P, ZHANG X , et al. Facile synthesis of graphene supported FeSn2 nanocrystals with enhanced Li-storage capability. RSC Advances, 2014,4(33):17401-17404.
|
[12] |
HUGGINS R A . Lithium alloy negative electrodes. J. Power Sources, 1999, 81-82(1/2):13-19.
|
[13] |
CUI W J, YI J, CHEN L , et al. Synjournal and electrochemical characteristics of NASICON-structured LiSn2(PO4)3 anode material for lithium-ion batteries.[J]. Power Sources, 2012,217(11):77-84.
|
[14] |
NAREN, TIAN J H, WANG D D , et al. Improved electrochemical performances of LiSn2(PO4)3 anode material for lithium-ion battery prepared by solid-state method.[J]. Power Sources, 2017,361(1):96-104.
|
[15] |
NORHANIZA R, SUBBAN R H Y, MOHAMED N S , et al. Chromium substituted LiSn2P3O12 solid electrolyte. Int.[J]. Electrochem. Sc., 2012,7(10):10254-10265.
|
[16] |
ZHANG P, WANG H, SI Q , et al. High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3. Solid State Ionics, 2015,272:101-106.
|
[17] |
ARGON M J, LAVELA P, ORTIZG F , et al. Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries. ChemElectroChem, 2015,2(7):995-1002.
|
[18] |
PLYLAHAN N, VIDAL-ABARCA C, LAVELA P , et al. Chromium substitution in ion exchanged Li3Fe2(PO4)3 and the effects on the electrochemical behavior as cathodes for lithium batteries. Electrochim. Acta, 2012,62(1):124-131.
|
[19] |
PRATTA R, BLOWES D W, PTACEK C . Products of chromate reduction on proposed subsurface remediation material.[J]. Environ. Sci. Technol., 1997,31:2492-2498.
|
[20] |
ZHANG B, HE J, HUA Z S , et al. Effect of MoO42- doping on electrochemicalproperties of the Nasicon Li3Fe2(PO4)3 cathode. Chinese J. Inorg. Chem., 2016,32(12):2109-2116.
|
[21] |
YANG Y G, ZHANG Y G, HUA Z S , et al. Effect of VO43- substitution for PO43- on electrochemical properties of the Li3Fe2(PO4)3 cathode materials. Electrochim.Acta, 2016,219(1):547-552.
|
[22] |
GENG S X, YANG Y G, ZHANG Y G , et al. Effect of VO43- substitution for PO43- on electrical conductivity in the Nasicon Li3Sc2(PO4)3 compound. Electrochim.Acta, 2015,219(1):327-333.
|