无机材料学报 ›› 2020, Vol. 35 ›› Issue (1): 105-111.DOI: 10.15541/jim20190161 CSTR: 32189.14.10.15541/jim20190161
所属专题: MAX相和MXene材料; 2020年能源材料论文精选(一) :金属离子电池&燃料电池; MXene材料专辑(2020~2021)
收稿日期:
2019-04-18
修回日期:
2019-07-19
出版日期:
2020-01-20
网络出版日期:
2019-09-12
作者简介:
郭丝霖(1995-), 女, 硕士研究生. E-mail:guosilin@cigit.ac.cn
基金资助:
GUO Si-Lin1,2,KANG Shuai1,2(),LU Wen-Qiang1,2
Received:
2019-04-18
Revised:
2019-07-19
Published:
2020-01-20
Online:
2019-09-12
About author:
GUO Si-Lin (1995-), female, Master candidate. E-mail:guosilin@cigit.ac.cn
Supported by:
摘要:
通过化学溶液法一步制备锗/MXene复合材料, 在MXene表面均匀负载了锗金属纳米颗粒。采用SEM和TEM对Ge/MXene复合材料进行了微观形貌分析, 探索了复合材料的形成过程, 结果表明, Ge/MXene复合材料是二维结构形貌, 其元素分布均一。用Ge/MXene复合材料制备了电极, 并组装成纽扣电池进行充放电性能测试, 对电池的比容量、倍率、循环稳定性能进行了系统分析。测试结果表明, Ge含量为50%时的电化学性能最佳, 0.2C下第5~100圈的容量稳定在1200 mAh/g, 载量为1 mg/cm 2; 载量提高到2 mg/cm 2时的比容量依然能达到450 mAh/g。
中图分类号:
郭丝霖, 康帅, 陆文强. 一步法制备锗/MXene复合材料及其作为锂离子电池负极的研究[J]. 无机材料学报, 2020, 35(1): 105-111.
GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2020, 35(1): 105-111.
图3 Ge/MXene 形貌分析(a~c)Ge/MXene的TEM照片; (b)低倍TEM照片, 图中的箭头指向明显的MXene片层; (c)高倍TEM照片, Ge颗粒被薄层碳包裹; (d)Ge/MXene的HADDF照片, 以及(e)C、(f)Ti和(g)Ge的EDS面分布图
Fig. 3 Morphology with analysis of Ge/MXene (a-c) TEM image of Ge/MXene; (b) Low magnification TEM image, the arrows points to typical MXene layers; (c) High magnification TEM image and thin carbon layer around Ge nanoparticle; (d) HADDF image of Ge/MXene; EDS mappings of (e) C, (f) Ti and (g) Ge
图4 不同退火时间制备的Ge/MXene的(a)XRD图谱和(b~f)TEM照片
Fig. 4 XRD patterns (a) of Ge/MXene with different annealing time and their TEM images (b-c) 0.5 h; (d-e) 1.5 h; (f) 3 h. Peaks marked with solid circles are from MXene and with cross are from Ge
图5 (a)Ge/MXene在不同倍率下的充放电曲线; 不同Ge含量的(b)倍率性能和 (c)交流阻抗图谱; 不同Ge含量的循环稳定性能(d)50wt%和(e)75wt%
Fig. 5 (a) Charge-discharge curves of Ge/MXene at different rate; (b) Rate performance, (c) EIS curves, and cycling performance of Ge/MXene with different Ge content ((d) 50wt% and (e) 75wt%)
[1] |
LIU T, LIN L, BI X ,et al. In sit quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol., 2019,14(1):50-56.
DOI URL PMID |
[2] |
JEŻOWSKI P, CROSNIER O, DEUNF E ,et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater., 2017,17(2):167-173.
DOI URL PMID |
[3] |
TONG X, ZHANG F, CHEN G ,et al. Core-shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater., 2018,8(6):1701967.
DOI URL |
[4] |
NAYAK P K, ERICKSON E M, SCHIPPER F ,et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater., 2018,8(8):1702397.
DOI URL |
[5] |
WINTER M, BARNETT B, XU K . Before Li ion batteries. Chem. Rev., 2018,118(23):11433-11456.
DOI URL PMID |
[6] |
DING J, HU W, PAEK E ,et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev., 2018,118(14):6457-6498.
DOI URL PMID |
[7] |
DENG J, BAE C, MARCICKI J ,et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat. Energy, 2018,3(4):261.
DOI URL |
[8] |
YANG Z, GU L, HU Y ,et al. Atomic-scale structure-property relationships in lithium ion battery electrode materials. Ann. Rev. Mater. Res., 2017,47(1):175-198.
DOI URL |
[9] |
SUN Y, LIU N, CUI Y . Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy, 2016,1(7):16071.
DOI URL |
[10] |
SCHMIDT O, HAWKES A, GAMBHIR A ,et al. The future cost of electrical energy storage based on experience rates. Nat. Energy, 2017,2(8):17118.
DOI URL |
[11] |
ALBERTUS P, BABINEC S, LITZELMAN S ,et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy, 2018,3(1):16-21.
DOI URL |
[12] |
CHOI J W, AURBACH D . Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater., 2016,1(4):16013.
DOI URL |
[13] |
CHAN C K, PENG H, LIU G ,et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 2008,3(1):31-35.
DOI URL PMID |
[14] |
MO R, ROONEY D, SUN K ,et al. 3D Nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun., 2017,8:13949.
DOI URL PMID |
[15] |
LIU Z, YU Q, ZHAO Y ,et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev., 2019,48(1):285-309.
DOI URL PMID |
[16] |
TARASCON J M, ARMAND M . Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414(6861):359-367.
DOI URL PMID |
[17] |
MA J, SUNG J, HONG J ,et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nat. Commun., 2019,10(1):475.
DOI URL PMID |
[18] |
KOVALENKO I, ZDYRKO B, MAGASINSKI A ,et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011,334(6052):75-79.
DOI URL |
[19] |
WU Z, REN W, WEN L ,et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010,4(6):3187-3194.
DOI URL PMID |
[20] |
GOGOTSI Y . Transition metal carbides go 2D. Nat. Mater., 2015,14(11):1079-1080.
DOI URL PMID |
[21] |
NAGUIB M, HALIM J, LU J ,et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc., 2013,135(43):15966-15969.
DOI URL PMID |
[22] |
NAGUIB M, KURTOGLU M, PRESSER V ,et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011,23(37):4248-4253.
DOI URL PMID |
[23] |
FU Z, ZHANG Q, LEGUT D , et al.Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B, 2016,94(10):104103.
DOI URL |
[24] |
WENG H, RANJBAR A, LIANG Y ,et al. Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B, 2015,92(7):075436.
DOI URL |
[25] |
ZHAO S, KANG W, XUE J . Manipulation of electronic and magnetic properties of M2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl. Phys. Lett., 2014,104(13):133106.
DOI URL |
[26] |
MA Z, HU Z, ZHAO X ,et al. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C, 2014,118(10):5593-5599.
DOI URL |
[27] |
LIANG X, GARSUCH A, NAZAR F . Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed., 2015,54(13):3907-3911.
DOI URL PMID |
[28] |
ZHAO X, LIU M, CHEN Y ,et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A, 2015,3(15):7870-7876.
DOI URL |
[29] |
LUO J, TAO X, ZHANG J ,et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016,10(2):2491-2499.
DOI URL PMID |
[30] |
LIAN P, DONG Y, WU Z ,et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017,40:1-8.
DOI URL |
[31] |
DONG Y, ZHENG S, QIN J ,et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 2018,12(3):2381-2388.
DOI URL PMID |
[32] |
MEDVEDEV A G, MIKHAYLOV A, GRISHANOV A ,et al. GeO2 thin film deposition on graphene oxide by the hydrogen peroxide route: evaluation for lithium-ion battery anode. ACS Appl. Mater. Interfaces, 2017,9(10):9152-9160.
DOI URL PMID |
[33] |
LI D, WANG H, LIU H , et al.A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv. Energy Mater., 2016,6(5):1501666.
DOI URL |
[34] |
GAO C, KIM N, VILLEGAS R ,et al. Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 2017,123:433-439.
DOI URL |
[35] |
ZHANG W, PANG H, SUN W ,et al. Metal-organic frameworks derived germanium oxide nanosheets for large reversible Li-ion storage. Electrochem. Commun., 2017,84:80-85.
DOI URL |
[36] |
FULLER C S, SEVERIENS J C . Mobility of impurity ions in germanium and silicon. Phys. Rev., 1954,96(1):21-24.
DOI URL |
[37] |
GRAETZ J, AHN C C, YAZAMI R ,et al. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc., 2004,151(5):A698-A702.
DOI URL |
[38] |
LIU X H, HUANG S, PICRAUX S T , et al.Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 2011,11(9):3991-3997.
DOI URL PMID |
[39] |
WANG D, CHANG Y, WANG Q ,et al. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc., 2004,126(37):11602-11611.
DOI URL PMID |
[1] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[2] | 程节, 周月, 罗薪涛, 高美婷, 骆思妃, 蔡丹敏, 吴雪垠, 朱立才, 袁中直. 蛋黄壳结构FeF3·0.33H2O@N掺杂碳纳米笼正极材料的构筑及其电化学性能[J]. 无机材料学报, 2024, 39(3): 299-305. |
[3] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[4] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[5] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[6] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[7] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. |
[8] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[9] | 陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214. |
[10] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[11] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[12] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[13] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
[14] | 苏楠, 邱介山, 王治宇. 高容量氟掺杂碳包覆纳米硅负极材料: 气相氟化法制备及其储锂性能[J]. 无机材料学报, 2023, 38(8): 947-953. |
[15] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||