无机材料学报 ›› 2020, Vol. 35 ›› Issue (4): 423-430.DOI: 10.15541/jim20190195

所属专题: 2020年能源材料论文精选(三) :太阳能电池、热电材料及其他

• 研究论文 • 上一篇    下一篇

晶格空位ZnO纳米棒的制备及其在镍锌电池中的应用

朱泽阳,魏济时,黄健航,董向阳,张鹏,熊焕明()   

  1. 复旦大学 化学系, 上海市分子催化和功能材料重点实验室, 上海 200433
  • 收稿日期:2019-05-05 修回日期:2019-07-26 出版日期:2020-04-20 网络出版日期:2019-09-04
  • 作者简介:朱泽阳(1992-), 男, 硕士研究生. E-mail: 15210220045@fudan.edu.cn
  • 基金资助:
    国家自然科学基金(21975048);国家自然科学基金(21771039);上海科学技术委员会(19DZ2270100)

Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery

ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming()   

  1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received:2019-05-05 Revised:2019-07-26 Published:2020-04-20 Online:2019-09-04
  • Supported by:
    National Natural Science Foundation of China(21975048);National Natural Science Foundation of China(21771039);Shanghai Science and Technology Committee(19DZ2270100)

摘要:

作为绿色、高功率密度的二次电池, 镍锌电池的应用往往受限于负极材料性能的不足。本工作以乌洛托品(HMT)为模板剂, 通过溶胶-凝胶法合成与热退火处理制备了高性能ZnO纳米棒。透射电子显微镜(TEM)、X射线衍射(XRD)和红外光谱(FT-IR)数据分别揭示了ZnO纳米棒的微观形貌、晶型结构和表面官能团。X射线光电子能谱(XPS)和电子顺磁共振(EPR)结果表明ZnO纳米棒中存在表层碳和晶格空位。Tafel曲线和电化学阻抗等测试表明: 与ZnO商品相比, ZnO纳米棒电极的腐蚀电流和电荷转移电阻分别降低了40%和62%。进一步研究发现, ZnO纳米棒构筑的镍锌电池具有更好的循环性能, 在1 A·g-1下循环100圈后, ZnO纳米棒的容量保持率为92%, 显著优于市售的ZnO粉末(32%)。

关键词: 镍锌电池, 晶格空位, ZnO纳米棒, 负极材料, 电化学性能

Abstract:

As a type of environmental benign secondary battery with high power density, Ni-Zn battery is often limited by the weakness of negative electrode materials in the applications. In this work, ZnO nanorods (NRs) with high performance were synthesized by Sol-Gel process with hexamethylenetetramine (HMT) as template and subsequent thermal annealing treatment. Morphology, crystalline structure and surface functional groups of ZnO NRs were characterized by transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscope (FT-IR), respectively. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) measurements reveal that ZnO NRs have carbon layers on the surface and vacancies in the lattice. Tafel tests and electrochemical impedance spectroscopy (EIS) show that the corrosion current and charge transfer resistance of ZnO NRs-based electrodes are reduced by 40% and 62%, respectively, compared with commercial ZnO. Further investigation show that Ni-Zn batteries fabricated with ZnO NRs have better cycling performances. After 100 cycles at a current density of 1 A·g-1, the capacity retention rate of ZnO NRs is 92%, which is significantly higher than that of commercial ZnO powder (32%).

Key words: nickel-zinc battery, lattice vacancy, ZnO nanorod, anode material, electrochemical performance

中图分类号: