无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 337-344.DOI: 10.15541/jim20230428 CSTR: 32189.14.10.15541/jim20230428
所属专题: 【能源环境】燃料电池(202409)
• 研究快报 • 上一篇
陈正鹏1(), 金芳军2,3(
), 李明飞1, 董江波1, 许仁辞1, 徐韩昭4, 熊凯5, 饶睦敏1, 陈创庭1, 李晓伟2, 凌意瀚2(
)
收稿日期:
2023-09-20
修回日期:
2023-11-16
出版日期:
2024-03-20
网络出版日期:
2023-11-28
通讯作者:
凌意瀚, 教授. E-mail: lyhyy@cumt.edu.cn;作者简介:
陈正鹏(1991-),男,硕士. E-mail: chenzhengpeng@geg.com.cn
CHEN Zhengpeng1(), JIN Fangjun2,3(
), LI Mingfei1, DONG Jiangbo1, XU Renci1, XU Hanzhao4, XIONG Kai5, RAO Muming1, CHEN Chuangting1, LI Xiaowei2, LING Yihan2(
)
Received:
2023-09-20
Revised:
2023-11-16
Published:
2024-03-20
Online:
2023-11-28
Contact:
LING Yihan, professor. E-mail: lyhyy@cumt.edu.cn;About author:
CHEN Zhengpeng (1991-), male, Master. E-mail: chenzhengpeng@geg.com.cn
Supported by:
摘要:
随着操作温度降低, 中温固体氧化物燃料电池(IT-SOFCs)需要更高催化活性的阴极材料来提升电池性能。为此, 本研究采用溶胶-凝胶法合成了双钙钛矿Sr2CoFeO5+δ (SCF)阴极材料, 并探讨了SCF阴极与摩尔分数20% Sm2O3掺杂的CeO2(SDC)进行不同比例的复合对电极性能的影响, 优化了电极的化学膨胀和面积比电阻(ASR),进而提升了SOFC单电池的电化学性能。结果表明, SCF作为SOFC阴极, 经950 ℃退火10 h后与普通电解质具有良好的化学相容性; 其中, SCF与SDC按照质量比1 : 1复合的样品可以将纯SCF样品的平均热膨胀系数(TEC)从2.44×10−5 K−1显著降到15.4×10−5 K−1。此外, SCF-xSDC(x=20, 30, 40, 50, x为SDC的质量分数)复合阴极的ASR在800 ℃下分别低至0.036、0.034、0.028和0.092 Ω·cm2, SCF-40SDC在所有温度范围内都表现出更小的ASR。复合SDC可以优化SCF的三相界面且进一步提高SCF阴极的催化活性, 以0.3mm厚La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)为电解质的SCF-40SDC单电池(757 mW·cm−2)比SCF单电池(684 mW·cm−2)的最大功率密度更优, 且超过目前大部分的文献报道。本研究制备的SCF−40SDC是一种性能优异的复合阴极材料, 有望应用于中温固体氧化物燃料电池。
中图分类号:
陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344.
CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells[J]. Journal of Inorganic Materials, 2024, 39(3): 337-344.
Fig. 4 (a) Thermal expansion behaviors and (b) thermal expansion coefficient curves of SCF-xSDC composite cathodes in the temperature range of 30-950 ℃ Colorful figures are available on website
Sample | Average TEC/(×10−6, K−1) | |
---|---|---|
SCF | 17.4 (30−400 ℃) | 28.8 (400−1000 ℃) |
SCF−20SDC | 15.6 (30−300 ℃) | 26.3 (300−950 ℃) |
SCF−30SDC | 15.0 (30−300 ℃) | 24.3 (300−950 ℃) |
SCF−40SDC | 14.5 (30−300 ℃) | 19.8 (300−950 ℃) |
SCF−50SDC | 12.5 (30−300 ℃) | 16.3 (300−950 ℃) |
Table 1 TEC of SCF-xSDC composite cathodes
Sample | Average TEC/(×10−6, K−1) | |
---|---|---|
SCF | 17.4 (30−400 ℃) | 28.8 (400−1000 ℃) |
SCF−20SDC | 15.6 (30−300 ℃) | 26.3 (300−950 ℃) |
SCF−30SDC | 15.0 (30−300 ℃) | 24.3 (300−950 ℃) |
SCF−40SDC | 14.5 (30−300 ℃) | 19.8 (300−950 ℃) |
SCF−50SDC | 12.5 (30−300 ℃) | 16.3 (300−950 ℃) |
Atom | Wyck. | S.O.F. | x/a | y/b | z/c | U/Å2 |
---|---|---|---|---|---|---|
Sr1 | 8c | 1 | 0.25 | 0.25 | 0.25 | 0.01083(1) |
Co1 | 4b | 1 | 0.5 | 0.5 | 0.5 | 0.01311(1) |
Fe1 | 4a | 1 | 0 | 0 | 0 | 0.0115(2) |
O1 | 24e | 1 | 0.2496(5) | 0 | 0 | 0.00995(2) |
Table S1 Atomic occupancy information (atomic parameters) of XRD refinement
Atom | Wyck. | S.O.F. | x/a | y/b | z/c | U/Å2 |
---|---|---|---|---|---|---|
Sr1 | 8c | 1 | 0.25 | 0.25 | 0.25 | 0.01083(1) |
Co1 | 4b | 1 | 0.5 | 0.5 | 0.5 | 0.01311(1) |
Fe1 | 4a | 1 | 0 | 0 | 0 | 0.0115(2) |
O1 | 24e | 1 | 0.2496(5) | 0 | 0 | 0.00995(2) |
Cathode | Electrolyte | T/℃ | Power density/(mW·cm-2) | Ref. |
---|---|---|---|---|
YBaCo2/3Fe2/3Cu2/3O5+δ | LSGM | 800 | 543 | [ |
SrCo0.7Fe0.2Ta0.1O3−δ | LSGM | 800 | 652.9 | [ |
PrBaCo2/3Fe2/3Cu2/3O5+δ | GDC | 800 | 659 | [ |
Pr1.9Ca0.1BaCoFeO5+δ | LSGM | 800 | 728 | [ |
SCF−40SDC | LSGM | 800 | 757 | This work |
Table S2 Electrochemical performance for cathode materials using hydrogen fuels
Cathode | Electrolyte | T/℃ | Power density/(mW·cm-2) | Ref. |
---|---|---|---|---|
YBaCo2/3Fe2/3Cu2/3O5+δ | LSGM | 800 | 543 | [ |
SrCo0.7Fe0.2Ta0.1O3−δ | LSGM | 800 | 652.9 | [ |
PrBaCo2/3Fe2/3Cu2/3O5+δ | GDC | 800 | 659 | [ |
Pr1.9Ca0.1BaCoFeO5+δ | LSGM | 800 | 728 | [ |
SCF−40SDC | LSGM | 800 | 757 | This work |
[1] |
GUO T M, DONG J B, CHEN Z P, et al. Enhanced compatibility and activity of high-entropy double perovskite cathode material for IT-SOFC. Journal of Inorganic Materials, 2023, 38(6): 693.
DOI |
[2] | HAN X, LING Y H, YANG Y, et al. Utilizing high entropy effects for developing chromium-tolerance cobalt-free cathode for solid oxide fuel cells. Advanced Functional Materials, 2023, 33(43): 202304728. |
[3] |
TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics, 1995, 76(3/4): 259.
DOI URL |
[4] |
TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics, 1995, 76(3/4): 273.
DOI URL |
[5] |
SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170.
DOI |
[6] |
WEI B, LU Z, LI S Y, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells. Electrochemical and Solid State Letters, 2005, 8(8): A428.
DOI URL |
[7] |
ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876.
DOI URL |
[8] |
JIN F J, SHEN Y, WANG R, et al. Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244.
DOI URL |
[9] |
LI J, SUN N, LIU X, et al. Investigation on Nd1-xCaxBaCo2O5+δ double perovskite as new oxygen electrode materials for reversible solid oxide cells. Journal of Alloys and Compounds, 2022, 913: 165245.
DOI URL |
[10] |
JIN F, XU H, LONG W, et al. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln=Pr and Nd) as intermediate- temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10.
DOI URL |
[11] |
LIU X, JIN F, SUN N, et al. Nd3+-deficiency double perovskite Nd1-xBaCo2O5+s and performance optimization as cathode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2021, 47(23): 33886.
DOI URL |
[12] |
BEZDICKA P, FOURNES L, WATTIAUX A, et al. Mössbauer characteristics of the Sr2CoFeO6 perovskite obtained by electrochemical oxidation. Solid State Communications, 1994, 91(7): 501.
DOI URL |
[13] |
MARTÍNEZ-LOPE MARÍA J, ALONSO JOSÉ A, CASAIS MARÍA T, et al. Preparation, crystal and magnetic structure of the double perovskites Ba2CoBO6 (B=Mo, W). European Journal of Inorganic Chemistry, 2002, 2002(9): 2463.
DOI URL |
[14] |
YOSHII K. Magnetic transition in the perovskite Ba2CoNbO6-δ. Journal of Solid State Chemistry, 2000, 151(2): 294.
DOI URL |
[15] |
COX D E, SHIRANE G, FRAZER B C. Neutron-diffraction study of antiferromagnetic Ba2CoWO6 and Ba2NiWO6. Journal of Applied Physics, 1967, 38(3): 1459.
DOI URL |
[16] | RAMMEH N, EHRENBERG H, FUESS H, et al. Structure and magnetic properties of the double-perovskites Ba2(B,Re)2O6 (B=Fe, Mn, Co and Ni). Physica Status Solidi (c), 2006, 3(9): 3225. |
[17] |
XIAO G L, LIU Q A, ZHAO F, et al. Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. Journal of Electrochem Society, 2011, 158: B455.
DOI URL |
[18] |
MENG J L, LIU X J, HAN L, et al. Improved electrochemical performance by doping cathode materials Sr2Fe1.5Mo0.5-xTaxO6-δ (0≤x≤0.15) for solid state fuel cell. Journal of Power Sources, 2014, 247: 845.
DOI URL |
[19] |
DENG Z Q, SMIT J P, NIU H J, et al. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6-δ as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154.
DOI URL |
[20] |
PRADHEESH R, NAIR H S, KUMAR C M N, et al. Observation of spin glass state in weakly ferromagnetic Sr2FeCoO6 double perovskite. Journal of Applied Physics, 2012, 111(5): 053905.
DOI URL |
[21] |
PRADHEESH R, NAIR HS, SANKARANARAYANAN V, et al. Large magnetoresistance and Jahn-Teller effect in Sr2FeCoO6. The European Physical Journal B, 2012, 85: 260.
DOI URL |
[22] |
PRADHEESH R, NAIR HS, SANKARANARAYANAN V, et al. Exchange bias and memory effect in double perovskite Sr2FeCoO6. Applied Physics Letters, 2012, 101(14): 142401.
DOI URL |
[23] |
CONG LG, HE TM, JI YA, et al. Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3-δ by glycine-nitrate combustion method. Journal of Alloys and Compounds. 2003, 348(1/2): 325.
DOI URL |
[24] |
WANG Y, JIN F, HAO X, et al. B-site-ordered Co-based double perovskites Sr2Co1-xNbxFeO5+δ as active and stable cathodes for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 829: 154470.
DOI URL |
[25] |
WU H, QIAN Y, TAN W, et al. The theoretical search for half- metallic material: the non-stoichiometric perovskite oxide Sr2FeCoO6-δ. Applied Physics Letters, 2011, 99(12): 123116.
DOI URL |
[26] |
SHAO Z, XIONG G, TONG J, et al. Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Separation and Purification Technology, 2001, 25(1/2/3): 419.
DOI URL |
[27] |
SHAO Z, YANG W, CONG Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. Journal of Membrane Science, 2000, 172(1/2): 177.
DOI URL |
[28] |
LIU X, JIN F, LIU X, et al. Effect of calcium doping on Sm1-xCaxBaCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochim Acta, 2021, 390: 138830.
DOI URL |
[29] |
LING Y H, GUO T M, GUO Y Y, et al. New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells. Journal of Advanced Ceramics, 2021, 10: 1052.
DOI |
[30] |
JIN F, LIU J, NIU B, et al. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δ cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439.
DOI URL |
[31] |
GHAFFARI M, SHANNON M, HUI H, et al. Preparation, surface state and band structure studies of SrTi(1-x)Fe(x)O(3-δ) (x=0-1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surface Science, 2012, 606(5/6): 670.
DOI URL |
[32] |
PIKALOVA EY, MARAGOU VI, DEMINA AN, et al. The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2-δ (Ln=Gd, Sm, La) solid-state electrolyte. Journal of Power Sources, 2008, 181(2): 199
DOI URL |
[33] |
JIN F, LIU J, SHEN Y, et al. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ- Sm0.2Ce0.8O1.9 (LnPr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483.
DOI URL |
[34] |
LIU B, SUNARSO J, ZHANG Y, et al. Highly oxygen non- stoichiometric BaSc0.25Co0.75O3-δ as a high-performance cathode for intermediate-temperature solid oxide fuel cells. ChemElectroChem, 2018, 5(5): 785.
DOI URL |
[35] |
BU Y F, DING D, LAI S Y, et al. Evaluation of La0.4Ba0.6Fe0.8Zn0.2O3-δ+Sm0.2Ce0.8O1.9 as a potential cobalt-free composite cathode for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2015, 275: 808.
DOI URL |
[36] |
LI S L, ZHANG L K, XIA T, et al. Synergistic effect study of EuBa0.98Co2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate- temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 771: 513.
DOI URL |
[37] | STEELE BCH. Survey of materials selection for ceramic fuel cells II. cathodes and anodes. Solid State Ionics, 1996, 86: 1223. |
[1] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[2] | 叶梓滨, 邹高昌, 吴琪雯, 颜晓敏, 周明扬, 刘江. 阳极支撑型锥管串接式直接碳固体氧化物燃料电池组的制备及性能[J]. 无机材料学报, 2024, 39(7): 819-827. |
[3] | 张琨, 王宇, 朱腾龙, 孙凯华, 韩敏芳, 钟秦. LaNi0.6Fe0.4O3阴极接触材料导电特性调控及其对SOFC电化学性能的影响[J]. 无机材料学报, 2024, 39(4): 367-373. |
[4] | 薛顶喜, 伊炳尧, 李国君, 马帅, 刘克勤. 功能梯度阳极固体氧化物燃料电池热应力数值模拟研究[J]. 无机材料学报, 2024, 39(11): 1189-1196. |
[5] | 王马超, 唐扬敏, 邓明雪, 周真真, 刘小峰, 王家成, 刘茜. 共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能[J]. 无机材料学报, 2023, 38(9): 1083-1088. |
[6] | 张伦, 吕梅, 朱俊. Cs2AgBiBr6钙钛矿太阳能电池研究进展[J]. 无机材料学报, 2023, 38(9): 1044-1054. |
[7] | 郭天民, 董江波, 陈正鹏, 饶睦敏, 李明飞, 李田, 凌意瀚. 中温固体氧化物燃料电池的高熵双钙钛矿阴极材料: 兼容性与活性研究[J]. 无机材料学报, 2023, 38(6): 693-700. |
[8] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[9] | 樊帅, 金天, 张山林, 雒晓涛, 李成新, 李长久. Li2O烧结助剂对固体氧化物燃料电池LSGM电解质烧结特性及离子电导率的影响[J]. 无机材料学报, 2022, 37(10): 1087-1092. |
[10] | 刘芳芳, 传秀云, 杨扬, 李爱军. 氮/硫共掺杂对纤水镁石模板碳纳米管电化学性能的影响[J]. 无机材料学报, 2021, 36(7): 711-717. |
[11] | 张亚萍,雷宇轩,丁文明,于濂清,朱帅霏. 双铁电复合材料的制备及其光电化学性能研究[J]. 无机材料学报, 2020, 35(9): 987-992. |
[12] | 曹丹,周明扬,刘志军,颜晓敏,刘江. 阳极支撑质子导体电解质固体氧化物燃料电池的制备及其性能研究[J]. 无机材料学报, 2020, 35(9): 1047-1052. |
[13] | 湛菁,徐昌藩,龙怡宇,李启厚. 聚丙烯酰胺凝胶法制备Bi2Mn4O10及其电化学性能[J]. 无机材料学报, 2020, 35(7): 827-833. |
[14] | 夏天, 孟燮, 骆婷, 占忠亮. 固体氧化物燃料电池LaxSr2-3x/2Fe1.5Ni0.1Mo0.4O6-δ阳极性能研究[J]. 无机材料学报, 2020, 35(5): 617-622. |
[15] | 郑坤, 罗永春, 邓安强, 杨洋, 张海民. A2B7型La0.3Y0.7Ni3.4-xMnxAl0.1储氢合金微观结构和电化学性能研究[J]. 无机材料学报, 2020, 35(5): 549-555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||