无机材料学报 ›› 2020, Vol. 35 ›› Issue (12): 1295-1306.DOI: 10.15541/jim20200134
所属专题: 能源材料论文精选(一):锂离子电池(2020); 【虚拟专辑】锂离子电池(2020~2021)
• 综述 • 下一篇
收稿日期:
2020-03-16
修回日期:
2020-04-22
出版日期:
2020-12-20
网络出版日期:
2020-05-10
作者简介:
郑时有(1974–), 男, 教授. E-mail: syzheng@usst.edu.cn
基金资助:
ZHENG Shiyou(),DONG Fei,PANG Yuepeng,HAN Pan,YANG Junhe
Received:
2020-03-16
Revised:
2020-04-22
Published:
2020-12-20
Online:
2020-05-10
About author:
ZHENG Shiyou(1974–), male, professor. E-mail: syzheng@usst.edu.cn
Supported by:
摘要:
负极材料是锂离子电池的重要组成部分, 目前商用锂离子电池的负极材料石墨的理论比容量仅为372 mAh/g, 严重制约了锂离子电池的进一步发展。在众多的锂离子电池负极材料新体系中, 金属氧化物具有理论比容量高、价格低廉、环境相容性好等优点, 受到广泛关注, 但是其存在导电性差、充放电体积变化大等缺点。研究发现, 纳米化可以在保持金属氧化物优点的同时克服其缺点, 因此成为金属氧化物基负极材料的研究热点。本文对近期纳米金属氧化物基锂离子电池负极材料研究的主要成果进行综述, 着重关注几种具有代表性的金属氧化物及其复合物的纳米结构设计与性能优化, 并为后续相关研究提出建议。
中图分类号:
郑时有, 董飞, 庞越鹏, 韩盼, 杨俊和. 纳米金属氧化物基锂离子电池负极材料研究进展[J]. 无机材料学报, 2020, 35(12): 1295-1306.
ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306.
图1 (a, b)SnO2/C-NTs的SEM照片; (c)循环稳定性曲线以及(d)倍率性能曲线[23]
Fig. 1 (a, b) SEM images of SnO2/C-NTs; (c) Cycling performance at 500 mA/g, and (d) rate capabilities of SnO2-NTs and SnO2/C-NTs[23]
图2 (a)超细SnO2纳米颗粒固定在介孔碳的孔道中的合成原理示意图; SnO2/介孔碳复合电极材料的(b)循环稳定性曲线和(c)倍率性能曲线[31]
Fig. 2 (a) Illustration of the synthesis principles of ultrafine SnO2 NPs immobilized in the mesopore channels of mesoporous carbon; (b) Cycle performance at 200 mA/g between 0.005 and 3 V, and (c) rate performance of electrodes based on different SnO2 content[31]
图4 (a)空心CuO@NCS复合材料的合成示意图, (b)在100 mA/g下的循环稳定性曲线[46]
Fig. 4 (a) Schematic illustration of the synthesis of hollow CuO@NCS composites; (b) Cycle performance of CuO@NCS at 100 mA/g[46]
图5 (a)颗粒与片上以及(b~d)片与片上的Fe2O3-石墨烯复合材料的TEM照片[57]
Fig. 5 TEM images of (a) Fe2O3-graphene particle-on-sheet composite, and (b-d) Fe2O3-graphene sheet-on-sheet composite[57]
图6 Fe3O4@N-HPCNs的(a)合成过程示意图, (b)TEM照片, 以及(c)循环稳定性曲线[63]
Fig. 6 (a) Illustration for the synthetic procedure, (b) TEM image, and (c) rate capabilities of Fe3O4@N-HPCNs[63]
图7 (a)非晶多孔CoSnO3/Au复合纳米立方的结构示意图; 在(b) 0.2和(c) 5 A/g电流密度下的循环稳定性曲线[65]
Fig. 7 (a) Structure diagrams of the amorphous porous CoSnO3/Au composite nanocubes; Cycle performance of the amorphous porous CoSnO3/Au composite nanocubes at (b) 0.2 and (c) 5 A/g[65]
图8 尖晶石ZnxCo3-xO4空心多面体的(a)合成过程示意图, (b)TEM照片, 以及(c)倍率性能曲线[79]
Fig. 8 (a) Schematic illustration for the synthetic procedure, (b) TEM image, and (c) rate capabilities of spinel ZnxCo3-xO4 hollow polyhedron[79]
Materials structure | First cyclic capacity/(mAh?g-1) (Current density/(A?g-1)) | Coulombic efficiency | Cycling performance/ (mAh?g-1) (Current density/ (A?g-1), cycle number) | Rate performance/(mAh?g-1) (Current density/(A?g-1)) | Ref. |
---|---|---|---|---|---|
SnO2 NPs (5~20 nm) | 1310 (0.1) | 69% | 800 (0.1, 100) | 850 (1); 800 (2) | [ |
SnO2/C-NT (15 nm) | 483 (0.5) | 51% | 596 (0.5, 200) | 683 (1); 550 (2) | [ |
SnO2 nanosheets (7.4 nm) | 1338 (0.1) | 55% | 763 (0.1, 300) | 460 (1); 280 (2) | [ |
SnO2 HS (50 nm) | 736 (0.1) | 47% | 540 (0.1, 50) | 550 (1); 422 (2) | [ |
SnO2/C (50~100 nm) | 998 (0.1) | 69% | 750 (0.1, 100) | 413 (1); 325 (2) | [ |
C-SnO2/CNT (7 nm) | 1373 (1) | 52% | 950 (1, 100) | 1100 (1); 950 (2) | [ |
SnO2@G-SWCNT (7 nm) | 1007 (0.1) | 53% | 785 (0.1, 100) | 510 (1); 426 (2) | [ |
SnO2@CMK-5 (4~5 nm) | 694 (0.2) | 71% | 1039 (0.1, 100) | 770 (1) | [ |
SnO2/C (2.8 nm) | 899 (1.4) | 44% | 560 (1.4, 100) | 700 (1.4); 538 (2.8) | [ |
CuO spheres (400 nm) | 590 (0.45) | 66% | 400 (0.45, 50) | - | [ |
CuO octahedra (5 nm) | 506 (0.5) | 70% | 785 (0.5, 50) | 488 (1); 370 (2) | [ |
CuO labyrinths (20 nm) | 645 (0.1) | 66% | 330 (1, 100) | 340 (1.3); 255 (3.4) | [ |
CuO NRAs (2~3 μm) | 751 (0.1) | 56% | 671 (0.1, 150) | 367 (1); 300 (2) | [ |
CuO spheres (10 nm) | 552 (0.67) | 55% | 750 (0.67, 350) | 650 (1.3); 600 (3.4) | [ |
CuO/MWCNT (10 nm) | 462 (0.07) | 69% | 650 (0.07, 100) | 590 (1.3); 590 (2) | [ |
Cu2O/CuO/rGO (500 nm) | 375 (0.3) | 75% | 570 (0.3, 100) | 350 (1.3); 250 (2.7) | [ |
Cu@NCSs (45 nm) | 909 (0.5) | 62% | 602 (0.5, 200) | 760 (1); 570 (2) | [ |
Graphene/Fe2O3 (40 nm) | 1074 (0.1) | 65% | 800 (0.1, 50) | - | [ |
Fe2O3/CA (5~50 nm) | 836 (0.1) | 55% | 635 (0.1, 100) | 652 (0.4); 546 (0.8) | [ |
RG-O/Fe2O3 (60 nm) | 1219 (0.1) | 72% | 1027 (0.1, 50) | 970 (0.4); 760 (0.8) | [ |
Fe3O4@PCFs (10~60 nm) | 1014 (0.2) | 72% | 920 (0.2, 80) | 677 (1); 523 (2) | [ |
Fe3O4/PPy (200 nm) | 493 (1) | 89% | 554 (1, 100) | 500 (1); 330 (2) | [ |
Fe3O4-CNTs (50~100 nm) | 845 (0.05) | 77% | 702 (0.05, 50) | - | [ |
Fe3O4@N-HPCNs (6 nm) | 521 (0.1) | 54% | 1240 (0.1, 100) | 700 (1); 600 (2) | [ |
CoMoO4 NPs (2~10 nm) | 1051 (0.2) | 72% | 1185 (0.2, 100) | 900 (1); 850 (2) | [ |
CoSnO3/Au cube (70 nm) | 1693 (0.2) | 68% | 1615 (0.2, 100) | 1425 (1); 1289 (2) | [ |
NiFe2O4 NPs (20 nm) | 1177 (0.1) | 79% | 1390 (0.1, 20) | 823 (1); 725 (3) | [ |
ZnxCo3-xO4 (10 nm) | 967 (0.1) | 76% | 990 (0.1, 50) | 1020 (0.9); 988 (2.7) | [ |
NixCo3-xO4 (40 nm) | 1133 (0.1) | 70% | 1109 (0.1, 100) | 864 (1); 728 (2) | [ |
表1 不同金属氧化物负极材料的结构与综合电化学性能
Table 1 Structures and comprehensive electrochemical performances of different metal oxide anode materials
Materials structure | First cyclic capacity/(mAh?g-1) (Current density/(A?g-1)) | Coulombic efficiency | Cycling performance/ (mAh?g-1) (Current density/ (A?g-1), cycle number) | Rate performance/(mAh?g-1) (Current density/(A?g-1)) | Ref. |
---|---|---|---|---|---|
SnO2 NPs (5~20 nm) | 1310 (0.1) | 69% | 800 (0.1, 100) | 850 (1); 800 (2) | [ |
SnO2/C-NT (15 nm) | 483 (0.5) | 51% | 596 (0.5, 200) | 683 (1); 550 (2) | [ |
SnO2 nanosheets (7.4 nm) | 1338 (0.1) | 55% | 763 (0.1, 300) | 460 (1); 280 (2) | [ |
SnO2 HS (50 nm) | 736 (0.1) | 47% | 540 (0.1, 50) | 550 (1); 422 (2) | [ |
SnO2/C (50~100 nm) | 998 (0.1) | 69% | 750 (0.1, 100) | 413 (1); 325 (2) | [ |
C-SnO2/CNT (7 nm) | 1373 (1) | 52% | 950 (1, 100) | 1100 (1); 950 (2) | [ |
SnO2@G-SWCNT (7 nm) | 1007 (0.1) | 53% | 785 (0.1, 100) | 510 (1); 426 (2) | [ |
SnO2@CMK-5 (4~5 nm) | 694 (0.2) | 71% | 1039 (0.1, 100) | 770 (1) | [ |
SnO2/C (2.8 nm) | 899 (1.4) | 44% | 560 (1.4, 100) | 700 (1.4); 538 (2.8) | [ |
CuO spheres (400 nm) | 590 (0.45) | 66% | 400 (0.45, 50) | - | [ |
CuO octahedra (5 nm) | 506 (0.5) | 70% | 785 (0.5, 50) | 488 (1); 370 (2) | [ |
CuO labyrinths (20 nm) | 645 (0.1) | 66% | 330 (1, 100) | 340 (1.3); 255 (3.4) | [ |
CuO NRAs (2~3 μm) | 751 (0.1) | 56% | 671 (0.1, 150) | 367 (1); 300 (2) | [ |
CuO spheres (10 nm) | 552 (0.67) | 55% | 750 (0.67, 350) | 650 (1.3); 600 (3.4) | [ |
CuO/MWCNT (10 nm) | 462 (0.07) | 69% | 650 (0.07, 100) | 590 (1.3); 590 (2) | [ |
Cu2O/CuO/rGO (500 nm) | 375 (0.3) | 75% | 570 (0.3, 100) | 350 (1.3); 250 (2.7) | [ |
Cu@NCSs (45 nm) | 909 (0.5) | 62% | 602 (0.5, 200) | 760 (1); 570 (2) | [ |
Graphene/Fe2O3 (40 nm) | 1074 (0.1) | 65% | 800 (0.1, 50) | - | [ |
Fe2O3/CA (5~50 nm) | 836 (0.1) | 55% | 635 (0.1, 100) | 652 (0.4); 546 (0.8) | [ |
RG-O/Fe2O3 (60 nm) | 1219 (0.1) | 72% | 1027 (0.1, 50) | 970 (0.4); 760 (0.8) | [ |
Fe3O4@PCFs (10~60 nm) | 1014 (0.2) | 72% | 920 (0.2, 80) | 677 (1); 523 (2) | [ |
Fe3O4/PPy (200 nm) | 493 (1) | 89% | 554 (1, 100) | 500 (1); 330 (2) | [ |
Fe3O4-CNTs (50~100 nm) | 845 (0.05) | 77% | 702 (0.05, 50) | - | [ |
Fe3O4@N-HPCNs (6 nm) | 521 (0.1) | 54% | 1240 (0.1, 100) | 700 (1); 600 (2) | [ |
CoMoO4 NPs (2~10 nm) | 1051 (0.2) | 72% | 1185 (0.2, 100) | 900 (1); 850 (2) | [ |
CoSnO3/Au cube (70 nm) | 1693 (0.2) | 68% | 1615 (0.2, 100) | 1425 (1); 1289 (2) | [ |
NiFe2O4 NPs (20 nm) | 1177 (0.1) | 79% | 1390 (0.1, 20) | 823 (1); 725 (3) | [ |
ZnxCo3-xO4 (10 nm) | 967 (0.1) | 76% | 990 (0.1, 50) | 1020 (0.9); 988 (2.7) | [ |
NixCo3-xO4 (40 nm) | 1133 (0.1) | 70% | 1109 (0.1, 100) | 864 (1); 728 (2) | [ |
[1] |
CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy- storage devices. Chemical Reviews, 2018,118(18):8936-8982.
DOI URL PMID |
[2] | XIONG Q Q, JI Z G. Controllable growth of MoS2/C flower-like microspheres with enhanced electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds, 2016,673:215-219. |
[3] | ZHANG Y, XIA X, LIU B, et al. Multiscale graphene-based materials for applications in sodium ion batteries. Advanced Energy Materials, 2019,9(8):1803342. |
[4] | LIN Y, GAO M X, ZHU D, et al. Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C. Journal of Power Sources, 2008,184(2):444-448. |
[5] | ZHANG S, GU H, PAN H, et al. A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Advanced Energy Materials, 2017,7(6):1601066. |
[6] | GENG K M, WU J J, GENG H B, et al. N-doped carbon- encapsulated cobalt nanoparticles on N-doped graphene nanosheets as a high-capacity anode material for lithium-ion storage. Chinese Journal of Inorganic Chemistry, 2016,32(9):1495-1502. |
[7] |
ZHANG X F, ZHAO Y, PATEL Y, et al. Potentiometric measurement of entropy change for lithium batteries. Physical Chemistry Chemical Physics, 2017,19(15):9833-9842.
DOI URL PMID |
[8] | DONG H, KOENIG G M. A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials. CrystEngComm, 2020,22(9):1514-1530. |
[9] | SHEN S, ZHANG S, DENG S, et al. Bioinspired large-scale production of multidimensional high-rate anodes for both liquid & solid-state lithium ion batteries. Journal of Materials Chemistry A, 2019,7(40):22958-22966. |
[10] |
AN W, GAO B, MEI S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Communications, 2019,10(1):1447.
DOI URL PMID |
[11] | WANG J, CHENG Z N, GUO Y Z, et al. Preparation and electrochemical performance of ordered mesoporous Si/C composite for anode material. Journal of Inorganic Materials, 2018,33(3):313-319. |
[12] | GUO S L, KANG S, LU W Q. Ge nanoparticles in MXene sheets: one-step synthesis and highly improved electrochemical property in lithium-ion batteries. Journal of Inorganic Materials, 2020,35(1):105-111. |
[13] |
YE X, LIN Z, LIANG S, et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Letters, 2019,19(3):1860-1866.
DOI URL PMID |
[14] | SCHULZE M C, BELSON R M, KRAYNAK L A, et al. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Materials, 2020,25:572-584. |
[15] | MCNULTY D, GEANEY H, BUCKLEY D, et al. High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy, 2018,43:11-21. |
[16] | LI W, WANG K, CHENG S, et al. A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. Journal of Materials Chemistry A, 2017,5(3):1160-1167. |
[17] | WANG D, GAO M, PAN H, et al. High performance amorphous- Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. Journal of Power Sources, 2014,256:190-199. |
[18] |
XIA X, ZHANG Y, CHAO D, et al. Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014,6(10):5008-5048.
DOI URL PMID |
[19] |
LIANG C, GAO M, PAN H, et al. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2013,575:246-256.
DOI URL |
[20] | IDOTA Y, KUBOTA T, MATSUFUJI A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science, 1997,276(5317):1395. |
[21] |
WANG R, XU C, SUN J, et al. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Applied Materials & Interfaces, 2014,6(5):3427-3436.
DOI URL PMID |
[22] | WANG L P, LECONTE Y, FENG Z, et al. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Advanced Materials, 2017,29(6):1603286. |
[23] |
ZHOU X, YU L, LOU X W. Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties. Nanoscale, 2016,8(15):8384-8389.
DOI URL PMID |
[24] | ZHANG X, JIANG B, GUO J, et al. Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles. Journal of Power Sources, 2014,268:365-371. |
[25] | LIU S, WANG R, LIU M, et al. Fe2O3@SnO2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014,2(13):4598-4604. |
[26] |
BHASKAR A, DEEPA M, RAO T N. Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries. Nanoscale, 2014,6(18):10762-10771.
DOI URL PMID |
[27] |
PANG Y, WANG J, YANG J, et al. Fully reversible lithium storage of tin oxide enabled by self-doping and partial amorphization. Nanoscale, 2019,11(27):12915-12923.
DOI URL PMID |
[28] |
ZHOU D, SONG W L, FAN L Z. Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2015,7(38):21472-21478.
DOI URL PMID |
[29] |
MA C, ZHANG W, HE Y S, et al. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale, 2016,8(7):4121-4126.
DOI URL PMID |
[30] |
WANG J, FANG F, YUAN T, et al. Three-dimensional graphene/ single-walled carbon nanotube aerogel anchored with SnO2 nanoparticles for high performance lithium storage. ACS Applied Materials & Interfaces, 2017,9(4):3544-3553.
DOI URL PMID |
[31] | HAN F, LI W C, LI M R, et al. Fabrication of superior performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. Journal of Materials Chemistry, 2012,22(19):9645-9651. |
[32] | JAHEL A, GHIMBEU C M, MONCONDUIT L, et al. Confined ultrasmall SnO2 particles in micro/mesoporous carbon as an extremely long cycle-life anode material for Li-ion batteries. Advanced Energy Materials, 2014,4(11):1400025. |
[33] | NAGPURE S C, BHUSHAN B, BABU S S. Multi-scale characterization studies of aged Li-ion large format cells for improved performance: an overview. Journal of The Electrochemical Society, 2013,160(11):A2111-A2154. |
[34] | HE S, LI J, WANG J, et al. Facile synthesis and lithium storage performance of hollow CuO microspheres. Materials Letters, 2014,129:5-7. |
[35] | XIANG J Y, TU J P, ZHANG L, et al. Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. Journal of Power Sources, 2010,195(1):313-319. |
[36] | WAN M, JIN D, FENG R, et al. Pillow-shaped porous CuO as anode material for lithium-ion batteries. Inorganic Chemistry Communications, 2011,14(1):38-41. |
[37] | HU Y, HUANG X, WANG K, et al. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. Journal of Solid State Chemistry, 2010,183(3):662-667. |
[38] | CHEN K, XUE D. Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials. The Journal of Physical Chemistry C, 2013,117(44):22576-22583. |
[39] | JUNG H R, CHO S J, KIM K N, et al. Electrochemical properties of electrospun CuxO (x=1, 2)-embedded carbon nanofiber with EXAFS analysis. Electrochimica Acta, 2011,56(19):6722-6731. |
[40] | MA Z, RUI K, ZHANG Q, et al. Self-templated formation of uniform F-CuO hollow octahedra for lithium ion batteries. Small, 2017,13(10):1603500. |
[41] | JIA S, WANG Y, LIU X, et al. Hierarchically porous CuO nano- labyrinths as binder-free anodes for long-life and high-rate lithium ion batteries. Nano Energy, 2019,59:229-236. |
[42] | YIN D, HUANG G, NA Z, et al. CuO nanorod arrays formed directly on Cu foil from MOFs as superior binder-free anode material for lithium-ion batteries. ACS Energy Letters, 2017,2(7):1564-1570. |
[43] | XU Y, JIAN G, ZACHARIAH M R, et al. Nano-structured carbon- coated CuO hollow spheres as stable and high rate anodes for lithium- ion batteries. Journal of Materials Chemistry A, 2013,1(48):15486-15490. |
[44] |
KO S, LEE J I, YANG H S, et al. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Advanced Materials, 2012,24(32):4451-4456.
DOI URL PMID |
[45] | WU S, FU G, LYU W, et al. A single-step hydrothermal route to 3D hierarchical Cu2O/CuO/rGo nanosheets as high-performance anode of lithium-ion batteries. Small, 2018,14(5):1702667. |
[46] | TAN Y, JIA Z, SUN J, et al. Controllable synthesis of hollow copper oxide encapsulated into N-doped carbon nanosheets as high-stability anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2017,5(46):24139-24144. |
[47] | LU X, WANG R, BAI Y, et al. Facile preparation of a three- dimensional Fe3O4/macroporous graphene composite for high- performance Li storage. Journal of Materials Chemistry A, 2015,3(22):12031-12037. |
[48] | WANG R, XU C, SUN J, et al. Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties. Scientific Reports, 2014,4(1):7171. |
[49] |
CAI J X, LI Z P, LI W, et al. Synthesis and electrochemical performance of Fe2O3 nanofibers as anode materials for LIBs. Journal of Inorganic Materials, 2018,33(3):301-306.
DOI URL |
[50] | WANG P, GAO M, PAN H, et al. A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium- ion batteries. Journal of Power Sources, 2013,239:466-474. |
[51] |
QIN X, ZHANG H, WU J, et al. Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon, 2015,87:347-356.
DOI URL |
[52] |
ZHONG Y, FAN H, CHANG L, et al. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries. Journal of Power Sources, 2015,296:255-260.
DOI URL |
[53] |
ZHAO B, ZHENG Y, YE F, et al. Multifunctional iron oxide nanoflake/ graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis. ACS Applied Materials & Interfaces, 2015,7(26):14446-14455.
DOI URL PMID |
[54] | PARK Y, OH M, PARK J S, et al. Electrochemically deposited Fe2O3 nanorods on carbon nanofibers for free-standing anodes of lithium-ion batteries. Carbon, 2015,94:9-17. |
[55] |
QU J, YIN Y X, WANG Y Q, et al. Layer structured α-Fe2O3 nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. ACS Applied Materials & Interfaces, 2013,5(9):3932-3936.
DOI URL PMID |
[56] | ZOU Y, KAN J, WANG Y. Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. The Journal of Physical Chemistry C, 2011,115(42):20747-20753. |
[57] | KAN J, WANG Y. Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites. Scientific Reports, 2013,3(1):3502. |
[58] | LIU N, SHEN J, LIU D. A Fe2O3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries. Electrochimica Acta, 2013,97:271-277. |
[59] |
ZHU X, ZHU Y, MURALI S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 2011,5(4):3333-3338.
DOI URL PMID |
[60] | PANG Y, WANG J, ZHOU Z, et al. Core-shell Fe3O4@Fe ultrafine nanoparticles as advanced anodes for Li-ion batteries. Journal of Alloys and Compounds, 2018,735:833-839. |
[61] | ZHAO J, ZHANG S, LIU W, et al. Fe3O4/ppy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochimica Acta, 2014,121:428-433. |
[62] | GUO Q, GUO P, LI J, et al. Fe3O4-CNTs nanocomposites: inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries. Journal of Solid State Chemistry, 2014,213:104-109. |
[63] | MAO J, NIU D, ZHENG N, et al. Fe3O4-embedded and N-doped hierarchically porous carbon nanospheres as high-performance lithium ion battery anodes. ACS Sustainable Chemistry & Engineering, 2019,7(3):3424-3433. |
[64] | MUSA N, WOO H J, TEO L P, et al. Optimization of Li2SnO3 synthesis for anode material application in Li-ion batteries. Materials Today: Proceedings, 2017,4(4, Part C):5169-5177. |
[65] |
HE T, FENG J, RU J, et al. Constructing heterointerface of metal atomic layer and amorphous anode material for high-capacity and fast lithium storage. ACS Nano, 2019,13(1):830-838.
DOI URL PMID |
[66] | TAN H, CHO H W, WU J J. Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries. Journal of Power Sources, 2018,388:11-18. |
[67] |
GE X, LI Z, WANG C, et al. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Applied Materials & Interfaces, 2015,7(48):26633-26642.
DOI URL PMID |
[68] | LI G, LI W, XU K, et al. Sponge-like NiCo2O4/MnO2 ultrathin nanoflakes for supercapacitor with high-rate performance and ultra- long cycle life. Journal of Materials Chemistry A, 2014,2(21):7738-7741. |
[69] | RAI A K, GIM J, THI T V, et al. High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries. The Journal of Physical Chemistry C, 2014,118(21):11234-11243. |
[70] |
ISLAM M, ALI G, JEONG M G, et al. Study on the electrochemical reaction mechanism of NiFe2O4 as a high-performance anode for Li-ion batteries. ACS Applied Materials & Interfaces, 2017,9(17):14833-14843.
URL PMID |
[71] |
LIAO L X, WANG M, FANG T, et al. Synthesis and characterization of ZnFe2O4 anode for lithium ion battery. Journal of Inorganic Materials, 2016,31(1):34-38.
DOI URL |
[72] |
WANG L, BOCK D C, LI J, et al. Synthesis and characterization of CuFe2O4 nano/submicron wire-carbon nanotube composites as binder-free anodes for Li-ion batteries. ACS Applied Materials & Interfaces, 2018,10(10):8770-8785.
DOI URL PMID |
[73] |
DENG S, ZHU H, WANG G, et al. Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nature Communications, 2020,11(1):132.
DOI URL PMID |
[74] | SHEN S, GUO W, XIE D, et al. A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7- based core/shell arrays. Journal of Materials Chemistry A, 2018,6(41):20195-20204. |
[75] | YAO Z, XIA X, ZHANG Y, et al. Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy, 2018,54:304-312. |
[76] |
WU J, PAN G, ZHONG W, et al. Rational synthesis of Cr0.5Nb24.5O62 microspheres as high-rate electrodes for lithium ion batteries. Journal of Colloid and Interface Science, 2020,562:511-517.
DOI URL PMID |
[77] |
ETTE P M, CHITHAMBARARAJ A, PRAKASH A S, et al. MoS2 nanoflower-derived interconnected CoMoO4 nanoarchitectures as a stable and high rate performing anode for lithium-ion battery applications. ACS Applied Materials & Interfaces, 2020,12(10):11511-11521.
DOI URL PMID |
[78] | YU Z, BAI Y, ZHANG S, et al. Metal-organic framework-derived Zn0.975Co0.025S/CoS2 embedded in N, S-codoped carbon nanotube/ nanopolyhedra as an efficient electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2018,6(22):10441-10446. |
[79] | WU R, QIAN X, ZHOU K, et al. Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano, 2014,8(6):6297-6303. |
[80] | WU L L, WANG Z, LONG Y, et al. Multishelled NixCo3-xO4 hollow microspheres derived from bimetal-organic frameworks as anode materials for high-performance lithium-ion batteries. Small, 2017,13(17):1604270. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||