[1] |
FAN T, CHEN C C, TANG Z H. Hydrothermal synthesis of novel BiFeO3/BiVO4 heterojunctions with enhanced photocatalytic activities under visible light irradiation. RSC Advances, 2016,6(12):9994-10000.
|
[2] |
LUO W J, YANG Z S, ZHANG J Y, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy & Environmental Science, 2011,4(10):4046-4046.
|
[3] |
WANG S C, CHEN P, BAI Y,et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater., 2018,30(20):e1800486.
URL
PMID
|
[4] |
YANG T J, WANG S L, YANG H G,et al. Preparation of BiVO4 by hydrothermal method and its photocatalytic properties under visible light irradiation. Journal of Yulin Normal University, 2018,39(5):55-64.
|
[5] |
ZHOU L, WANG W Z, LIU S W,et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. Journal of Molecular Catalysis A: Chemical, 2006,252(1/2):120-124.
|
[6] |
YU J Q, KUDO A. Hydrothermal synthesis of nanofibrous bismuth vanadate. Chemistry Letters, 2005,34(6):850-851.
DOI
URL
|
[7] |
ZHANG K, JIN B J, PARK C, et al. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019,10:2001-2010.
URL
PMID
|
[8] |
YANG W G, YU Y H, STARR M, et al. Ferroelectric polarization- enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett., 2015,15(11):7574-7580.
DOI
URL
PMID
|
[9] |
LEE H, JOO H Y, YOON C,et al. Ferroelectric BiFeO3/TiO2 nanotube heterostructures for enhanced photoelectrochemical performance. Current Applied Physics, 2017,17(5):679-683.
|
[10] |
WANG Y Z, CHEN D, WANG S, et al. Photoassisted electrodeposition of cobalt-phosphate cocatalyst on BiFeO3 thin film photoanode for highly efficient photoelectrochemical performances of water oxidation. Journal of The Electrochemical Society, 2019,166(8):D308-D314.
|
[11] |
XIE J L, GUO C X, YANG P P,et al. Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy, 2017,31:28-36.
DOI
URL
|
[12] |
KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 2014,343(6174):990-994.
URL
PMID
|
[13] |
CHEN Y, ZHOU K C, HUANG S P, et al. Hydrothermal synthesis and photocatalytic property of BiVO4 nanosheets. The Chinese Journal of Nonferrous Metals, 2011,21(7):1570-1579.
|
[14] |
LI C J, ZHANG P, LÜ R,et al. Selective deposition of Ag3PO4 on monoclinic BiVO4(040) for highly efficient photocatalysis. Small, 2013,9(23):3950-3956.
|
[15] |
GONG S Q, JIANG Z J, SHI P H, et al. Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: molybdenum nitride/ultrathin graphitic carbon nitride. Applied Catalysis B: Environmental, 2018,238:318-327.
|
[16] |
YU L Q, HUANG C X, ZHANG Y P, et al. Photoelectrochemical properties of MoS2 modified TiO2 nanotube arrays. Journal of Inorganic Materials, 2016,31(11):1237-1241.
|
[17] |
ZHANG Y P, GU R, ZHENG S,et al. Long-life Li-S batteries based on enabling the immobilization and catalytic conversion of polysulfides. J. Mater. Chem. A, 2019,7(38):21747-21758.
|
[18] |
SONG J, KIM T L, LEE J,et al. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Research, 2018,11(2):642-655.
|
[19] |
SHI J, ZHAO P. Piezoelectric polarization enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater., 2013,25(6):916-921.
URL
PMID
|
[20] |
SANG Y J, SONG J, LEE S. Photoelectrochemical device designs toward practical solar water splitting: a review on the recent progress of BiVO4 and BiFeO3 photoanodes. Appl. Sci., 2018,8(8):1388.
|