[1] |
Padture N P, Gell M, Jordan E H. Materials science - thermal barrier coatings for gas-turbine engine apptications. Science, 2002, 296(5566): 280-284.
|
[2] |
Mauer G, Vassen R. Current developments and challenges in thermal barrier coatings. Surf. Eng., 2011, 27(7): 477-479.
|
[3] |
Hsiao W T, Su C Y, Huang T S, et al. The microstructural characteristics and mechanical properties of Ni-Al/h-BN coatings deposited using plasma spraying. J. Alloys Compd., 2011, 509(32): 8239-8245.
|
[4] |
Basu S N, Ye G, Gevelber M, et al. Microcrack formation in plasma sprayed thermal barrier coatings. J. Refra. Meta. Mater., 2005, 23(4/5/6): 335-343.
|
[5] |
Tan Y, Longtin J P, Sampath S, et al. Effect of the starting microstructure on the thermal properties of as-sprayed and thermally exposed plasma-sprayed YSZ coatings. J. Am. Ceram. Soc., 2009, 92(3): 710-716.
|
[6] |
Xue M, Chandra S, Mostag J, et al. Formation of pores in thermal spray coatings due to incomplete filling of crevices in patterned surfaces. Plasma Chem. Plasma Process, 2007, 27(5): 647-657.
|
[7] |
Vourlias G, Pistofidis N, Psyllaki P, et al. Plasma-sprayed YSZ coatings: microstructural features and resistance to molten metals. J. Alloys Compd., 2009, 483(1/2): 382-385.
|
[8] |
Jang B K, Matsubara H. Thermophysical properties of EB-PVD coatings and sintered ceramics of 4mol% Y2O3-stabilized zirconia. J. Alloys Compd., 2006, 419(1/2): 243-246.
|
[9] |
Chi W G, Sampath S, Wang H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J. Am. Ceram. Soc., 2008, 91(8): 2636-2645.
|
[10] |
Kulkarni A, Wang Z, Sampath S. Comprehensive microstructural characterization and predictive property modeling of plasma- sprayed zirconia coatings. Acta Mater., 2003, 51(9): 2457-2475,.
|
[11] |
Sevostianov I, Gorbatikh L, Kachanov M. Recovery of information on the microstructure of porous/microcracked materials from the effective elastic/conductive properties. Mater. Sci. Eng., 2001, 318(1/2): 1-14.
|
[12] |
Ahmaniemi S, Vuoristo P, Mantyla T, et al. Modified thick thermal barrier coatings: Thermophysical characterization. J. Eur. Ceram. Soc., 2004, 24(9): 2669-2679.
|
[13] |
Bertrand G, Bertrand P, Roy P, et al. Low conductivity plasma sprayed thermal barrier coating using hollow psz spheres: correlation between thermophysical properties and microstructure. Surf. Coat. Tech., 2008, 202(10): 1994-2001.
|
[14] |
Du H, Lee S W, Shin J H. Study on porosity of plasma-sprayed coatings by digital image analysis method. J. Therm. Spray Tech., 2005, 14(4): 453-461.
|
[15] |
Wang Z, Kulkarni A, Ddeshpande S, et al. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Mater., 2003, 51(18): 5319-5334.
|
[16] |
Saruhan B, Ryukhtin V, Kelm K. Correlation of thermal conductivity changes with anisotropic nano-pores of EB-PVD deposited FYSZ-coatings. Surf. Coat. Tech., 2011, 205(23/24): 5369-5378.
|
[17] |
Mayo S C, Miller P R, Wilkins S W. Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging. J. Microscopy-Oxford, 2002, 207(2): 79-96.
|
[18] |
Zahiri S H, Mayo S C, Jahedi M. Characterization of cold spray titanium deposits by X-ray microscopy and microtomography. Microscopy and Microanalysis, 2008, 14(3): 260-266.
|
[19] |
Guo H B, Vaben R, Stover D. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surf. Coat. Tech., 2004, 186(3): 353-363.
|
[20] |
Taylor R E. Thermal conductivity determinations of thermal barrier coatings. Mater. Sci.Eng. , 1998, 245(2): 160-167.
|
[21] |
Cernuschi F, Ahmaniemi S, Vuoristo P, et al. Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. J. Eur. Ceram. Soc., 2004, 24(9): 2657-2667.
|