[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669. [2] KIM K S, KWON J, RYU H, et al. The future of two-dimensional semiconductors beyond Moore’s law. Nature Nanotechnology, 2024, 19(7): 895-906. [3] AKINWANDE D, HUYGHEBAERT C, WANG C-H, et al. Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573(7775): 507-518. [4] XING R, ZHANG X, FAN X, et al. Coupling strategies of multi-physical fields in 2D materials-based photodetectors. Advanced Materials, 2025, 37(16): 2501833. [5] 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望.无机材料学报, 2023, 39(2): 162-170. [6] WANG S, LIU X, XU M, et al. Two-dimensional devices and integration towards the silicon lines. Nature Materials, 2022, 21(11): 1225-1239. [7] DAS S, SEBASTIAN A, POP E, et al. Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics, 2021, 4(11): 786-799. [8] LIU Y, DUAN X, SHIN H-[J], et al. Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43-53. [9] TAN C, YU M, TANG[J], et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature, 2023, 616(7955): 66-72. [10] WYSS K M, LUONG D X, TOUR J M.Large‐scale syntheses of 2D materials: flash joule heating and other methods.Advanced Materials, 2022, 34(8): 2106970. [11] 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望.无机材料学报, 2023, 39(2): 186-194. [12] LI S, LIU X, YANG H, et al. Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics, 2024, 7(3): 216-224. [13] ZHANG Q, HOU L, SHAUTSOVA V, et al. Ultrathin all-2D lateral diodes using top and bottom contacted laterally spaced graphene electrodes to WS2 semiconductor monolayers. ACS Applied Materials & Interfaces, 2023, 15(14): 18012-18021. [14] TAN C, YIN S, CHEN[J], et al. Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano, 2021, 15(5): 8328-8337. [15] WU F, XIA H, SUN H, et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Advanced Functional Materials, 2019, 29(12): 1900314. [16] LIU X, QU D, LI H-M, et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p-n junction. ACS Nano, 2017, 11(9): 9143-9150. [17] LI J, WANG Z, WEN Y, et al. High‐performance near‐infrared photodetector based on ultrathin Bi2O2Se nanosheets. Advanced Functional Materials, 2018, 28(10): 1706437. [18] WANG W, MENG Y, ZHANG Y, et al. Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Advanced Materials, 2023, 35(12): 2210854. [19] YIN J, TAN Z, HONG H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nature Communications, 2018, 9(1): 3311. [20] ZHANG Z, LI T, WU Y, et al. Truly concomitant and independently expressed short‐and long‐term plasticity in a Bi2O2Se‐based three‐terminal memristor. Advanced Materials, 2019, 31(3): 1805769. [21] LUO P, ZHUGE F, WANG F, et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano, 2019, 13(8): 9028-9037. [22] FAKIH I, DURNAN O, MAHVASH F, et al. Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun., 2020, 11(1): 3226. [23] WANG W, MENG Y, WANG W, et al. Highly efficient full van der Waals 1D p‐Te/2D n‐Bi2O2Se heterodiodes with nanoscale ultra‐photosensitive channels. Advanced Functional Materials, 2022, 32(30): 2203003. [24] LIU W, LV J, PENG L, et al. Graphene charge-injection photodetectors. Nature Electronics, 2022, 5(5): 281-288. [25] SHIN J, YOO H.Photogating effect-driven photodetectors and their emerging applications.Nanomaterials, 2023, 13(5): 882. [26] TSAI T-H, LIANG Z-Y, LIN Y-C, et al. Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS nano, 2020, 14(4): 4559-4566. [27] 张世斌孔, 徐艳月,王永谦,刁宏伟,廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化.物理学报, 2002(01): 111-114. [28] HAN J, FANG C, YU M, et al. A high‐performance schottky photodiode with asymmetric metal contacts constructed on 2D Bi2O2Se. Advanced Electronic Materials, 2022, 8(7): 2100987. [29] LIU J, HAO Q, GAN H, et al. Selectively modulated photoresponse in type‐I heterojunction for ultrasensitive self‐powered photodetectors. Laser & Photonics Reviews, 2022, 16(11): 2200338. [30] 杨佳霖, 王亮君, 阮丝园, et al. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器. 无机材料学报, 2024, 39(9): 1063-1069. [31] LIU C-H, CHANG Y-C, NORRIS T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature nanotechnology, 2014, 9(4): 273-278. [32] SUN L, XU Y, HUO G,et al. Multifunctional neuromorphic optoelectronic computing using all 2D floating-gate transistors. Nano Energy, 2025, 143: 111311. [33] GAO W, ZHANG S, ZHANG F, et al. 2D WS2 based asymmetric Schottky photodetector with high performance. Advanced Electronic Materials, 2021, 7(7): 2000964. [34] CHEN J, ZHANG Z, FENG[J], et al. 2D InSe self‐powered schottky photodetector with the same metal in asymmetric contacts. Advanced Materials Interfaces, 2022, 9(35): 2200075. [35] HUANG W, HANG P, WANG Y, et al. Zero-power optoelectronic synaptic devices. Nano Energy, 2020, 73: 104790. [36] HAO Z, WANG H, JIANG S, et al. Retina‐inspired self‐powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions. Advanced Science, 2022, 9(7): 2103494. [37] 王靖瑜, 万昌锦, 万青. 基于Al2O3/Chitosan叠层栅介质的双栅IGZO神经形态晶体管.无机材料学报, 2023, 38(4): 445-451. [38] WANG X, ZONG Y, LIU D, et al. Advanced optoelectronic devices for neuromorphic analog based on low‐dimensional semiconductors. Advanced Functional Materials, 2023, 33(15): 2213894. [39] ZHANG H-S, DONG X-M, ZHANG Z-C, et al. Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics. Nature Communications, 2022, 13(1): 4996. [40] WANG W X, GAO S, LI Y, et al. Artificial optoelectronic synapses based on TiNxO2-x/MoS2 heterojunction for neuromorphic computing and visual system. Advanced Functional Materials, 2021, 31(34): 2101201. [41] HUANG W, HANG P, XIA X, et al. Two-terminal self-rectifying optoelectronic synaptic devices with largest-dynamic-range updates. Applied Materials Today, 2023, 30: 101728. [42] HE J, CHEN K, HUANG C, et al. Explicit gain equations for single crystalline photoconductors. ACS nano, 2020, 14(3): 3405-3413. [43] LI X, CHEN F, WANG X, et al. Emulation of optical and electrical synaptic functions in MoS2/SnSe2 van der Waals heterojunction memtransistors. Japanese Journal of Applied Physics, 2024, 63(5): 056502. [44] REN X, HE X, DUAN Z, et al. Self-Powered and broadband optical synapse device based on Se-vacancy Bi2O2Se for artificial vision system application. ACS Photonics, 2024, 11(11): 4990-4999. [45] HAN S S, SHIN J-C, GHANIPOUR A, et al. High mobility transistors and flexible optical synapses enabled by wafer-scale chemical transformation of Pt-based 2D layers. ACS Applied Materials & Interfaces, 2024, 16(28): 36599-36608. [46] ZHANG Y, TANG Y, LIU K, et al. Optoelectronic synapse based on Te/SnS2 heterostructure with integrated sensing‐memory‐computing for neuromorphic visual system. Advanced Optical Materials, 2025, 13(26): e01371. [47] HOU P, TAN S, ZHENG S.Design and implementation of an infrared artificial visual neural synapse based on a p-WSe2/n-Ta2NiS5 van der Waals heterojunction.Journal of Materials Chemistry C, 2024, 12(41): 16722-16731. [48] DONG M, ZHANG Y, ZHU[J], et al. All‐in‐One 2D molecular crystal optoelectronic synapse for polarization‐sensitive neuromorphic visual system. Advanced Materials, 2024, 36(40): 2409550. |