无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 267-273.DOI: 10.15541/jim20230259 CSTR: 32189.14.10.15541/jim20230259

所属专题: 【结构材料】陶瓷基复合材料(202409)

• 研究论文 • 上一篇    下一篇

含有石墨烯阵列的SiC基陶瓷材料的制备与力学性能

孙川1(), 何鹏飞1, 胡振峰1, 王荣1, 邢悦1, 张志彬1, 李竞龙1, 万春磊2, 梁秀兵1()   

  1. 1.军事科学院 国防科技创新研究院, 北京 100071
    2.清华大学 新型陶瓷与精细工艺国家重点实验室, 北京 100084
  • 收稿日期:2023-06-02 修回日期:2023-07-28 出版日期:2024-03-20 网络出版日期:2023-08-31
  • 通讯作者: 梁秀兵, 研究员. E-mail: liangxb_d@163.com
  • 作者简介:孙川(1986-), 男, 博士. E-mail: sunchuanyeah@163.com
  • 基金资助:
    国家自然科学基金(51975582);北京市科技计划课题(Z211100002421003)

SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization

SUN Chuan1(), HE Pengfei1, HU Zhenfeng1, WANG Rong1, XING Yue1, ZHANG Zhibin1, LI Jinglong1, WAN Chunlei2, LIANG Xiubing1()   

  1. 1. National Innovation Institute of Defense Technology, Academy of Military Sciences of the People’s Liberation Army of China, Beijing 100071, China
    2. State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
  • Received:2023-06-02 Revised:2023-07-28 Published:2024-03-20 Online:2023-08-31
  • Contact: LIANG Xiubing, professor. E-mail: liangxb_d@163.com
  • About author:SUN Chuan (1986-), male, PhD. E-mail: sunchuanyeah@163.com
  • Supported by:
    National Natural Science Foundation of China(51975582);Beijing Municipal Science and Technology Project(Z211100002421003)

摘要:

碳化硅陶瓷是一种重要工程材料, 但具有一定的脆性, 这限制了其进一步应用。二维石墨烯具有诸多优良特性, 可以作为第二相对碳化硅陶瓷材料进行性能改善。然而石墨烯在陶瓷基体中存在分散性较差等问题, 难以发挥其对陶瓷基体的改性作用。为解决以上问题, 本工作以陶瓷有机前驱体聚碳硅烷和工业可膨胀石墨为原料, 通过前驱体-纳米插层技术制备了少层石墨烯纳米片(GNPs)的体积分数分别为1%、3%和5%的SiC/GNPs陶瓷基复合材料。GNPs在SiC陶瓷基体中呈阵列态平行排布, 显示出极高的取向性; 随着GNPs含量增加, 阵列中GNPs的间距依次递减, 表现出一定的微观组织拓扑可调节性; 加入GNPs显著提高了SiC陶瓷的断裂韧性, 当GNPs含量为3%时, 样品的相对密度为98.5%, 抗弯强度为445 MPa, 断裂韧性达到最高值5.67 MPa·m1/2, 相比纯SiC陶瓷提高了40%, 由GNPs引发的裂纹偏转与桥连是主要的增韧机制。而进一步提高GNPs含量, 断裂韧性下降至4.37 MPa·m1/2。这种含有石墨烯阵列的复合材料可以用于新型“结构-功能一体化”SiC基陶瓷器件的设计与开发。

关键词: 碳化硅, 石墨烯, 微观组织, 断裂韧性, 陶瓷增韧

Abstract:

Silicon carbide ceramics are important engineering materials, but their application is limited by the inherent brittleness. Two-dimensional graphene, with its excellent properties, can be used as a second phase to improve the performance of silicon carbide ceramics. However, due to poor dispersion of graphene in the ceramic matrix, it is a challenge to fully exploit the modifying effect of graphene in composite materials. To address these challenges, SiC-based ceramic materials incorporating graphene nanosheets (GNPs) were synthesized using ceramic organic precursor polycarbosilane and industrial expandable graphite as starting materials. The precursor intercalation technique was employed to fabricate SiC/GNPs ceramic composites with GNPs volume fraction of 1%, 3%, and 5%. The GNPs were uniformly arranged in an array-like parallel fashion in the SiC ceramic matrix, showing excellent orientation. With the GNPs content increasing, the spacing between GNPs within the array decreased, indicating tunable microstructural topology. The addition of GNPs greatly enhanced the fracture toughness of SiC ceramics. When the GNPs content was 3%, the relative density of the samples reached 98.5%, the bending strength reached 445 MPa, and the fracture toughness (KIC value) peaked at 5.67 MPa·m1/2, surpassing pure SiC ceramics by 40%, which was primarily attributed to crack deflection and bridging induced by the GNPs. However, further increase in GNPs content led to a decrease in fracture toughness to 4.37 MPa·m1/2. These SiC-based ceramic composites with a graphene array have potential application in design and development of novel “structure-function integration” SiC-based ceramic devices.

Key words: silicon carbide, graphene, microstructure, fracture toughness, ceramic toughening

中图分类号: