无机材料学报 ›› 2025, Vol. 40 ›› Issue (5): 473-480.DOI: 10.15541/jim20240445

• 研究论文 • 上一篇    下一篇

基于Cu与金属氧化物-KCl熔融介质的甲烷热解制备少层石墨烯与氢气联产研究

杨茗凯1(), 黄泽皑1,2, 周芸霄1, 刘彤1, 张魁魁1, 谭浩1, 刘梦颖1, 詹俊杰1, 陈国星3, 周莹1,2()   

  1. 1.西南石油大学 新能源与材料学院, 成都 610500
    2.西南石油大学 油气藏地质及开发工程全国重点实验室, 成都 610500
    3.达姆施塔特工业大学 材料与地球科学系, 达姆施塔特 64287
  • 收稿日期:2024-10-25 修回日期:2025-01-10 出版日期:2025-05-20 网络出版日期:2025-01-24
  • 通讯作者: 周 莹, 教授. E-mail: yzhou@swpu.edu.cn
  • 作者简介:杨茗凯(1997-), 男, 硕士研究生. E-mail: yangmk97@163.com
  • 基金资助:
    国家自然科学基金杰出青年基金(52325401);四川省重点研发项目(2023YFG0106)

Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium

YANG Mingkai1(), HUANG Zeai1,2, ZHOU Yunxiao1, LIU Tong1, ZHANG Kuikui1, TAN Hao1, LIU Mengying1, ZHAN Junjie1, CHEN Guoxing3, ZHOU Ying1,2()   

  1. 1. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    3. Department of Materials and Earth Sciences, Technical University Darmstadt, Darmstadt 64287, Germany
  • Received:2024-10-25 Revised:2025-01-10 Published:2025-05-20 Online:2025-01-24
  • Contact: ZHOU Ying, professor. E-mail: yzhou@swpu.edu.cn
  • About author:YANG Mingkai (1997-), male, Master candidate. E-mail: yangmk97@163.com
  • Supported by:
    National Natural Science Fund for Distinguished Young Scholars of China(52325401);Key Research and Development Project of Sichuan Province(2023YFG0106)

摘要:

甲烷热解是一种利用化石能源制备高附加值碳材料和氢气的技术。然而, 传统的化学气相沉积(CVD)法和熔融金属催化法在制备石墨烯时存在固体催化剂失活、石墨烯与催化剂分离困难以及反应温度高(≥1100 ℃)等问题, 限制了其工业化应用。本研究提出了通过金属Cu与金属氧化物-KCl熔融介质催化甲烷热解制备石墨烯的创新方案。通过添加金属氧化物(Al2O3、TiO2、ZrO2、MgO、SiO2)作为分散剂, 增强了Cu球活性位点的分散性, 特别是Cu球体积分数为50%的Cu/ZrO2和Cu球体积分数为75%的Cu/MgO催化剂, 可有效制备少层石墨烯。前者表现出最佳活性, 其甲烷转化率为22%, 氢气产率为21.5 mmol/h, 而且能产生大面积、平整的少层石墨烯。本研究为甲烷热解联产石墨烯与氢气的工业化发展提供了新的技术路线, 未来有望实现石墨烯的规模化制备。

关键词: 甲烷热解, 熔融介质, 少层石墨烯, 氢气, 铜/金属氧化物

Abstract:

Methane pyrolysis is a technology that utilizes fossil energy to produce high added value carbon materials and hydrogen. However, traditional methods, such as chemical vapor deposition (CVD) and molten metal catalysis, face challenges in the production of graphene, including catalyst deactivation, difficulty in separating graphene from the catalyst, and high reaction temperatures (≥1100 ℃), which limit their industrial applications. This study proposes an innovative approach to produce graphene by catalyzing methane pyrolysis using Cu and metal oxides-KCl molten medium. By adding metal oxides (Al2O3, TiO2, ZrO2, MgO, SiO2) as dispersants, the dispersion of active Cu sites is enhanced. Notably, Cu/ZrO2 with a Cu content of 50% (in volume) and Cu/MgO with a Cu content of 75% (in volume) catalysts enable the efficient production of few-layer graphene. Cu/ZrO2 catalyst with a Cu content of 50% (in volume) exhibits the highest activity, achieving a methane conversion rate of 22%, a hydrogen production yield of 21.5 mmol/h, and formation of large-area and smooth few-layer graphene. This study provides a new technical route for co-production of graphene and hydrogen via methane pyrolysis, offering potential for large-scale graphene production in the future.

Key words: methane pyrolysis, molten medium, few-layer graphene, hydrogen, copper/metal oxide

中图分类号: