| [1] | MURAT O, NICOLAS E, WANG B M, et al. Nanosecond protonic programmable resistors for analog deep learning. Science, 2022, 377: 539. | 
																													
																						| [2] | LIANG F X, WANG T, HOU T H. Progress and benchmark of spiking neuron devices and circuits. Advanced Intelligent Systems, 2021,  3(8):2100007. DOI    
																																					URL
 | 
																													
																						| [3] | ABU S, MANUEL L G, RIDUAN K A, et al. Memory devices and applications for in-memory computing. Nature Nanotechnology, 2020,  15(7):529. DOI    
																																																	PMID
 | 
																													
																						| [4] | YANG K, YANG J J, HUANG R, et al. Nonlinearity in memristors for neuromorphic dynamic systems. Small Science, 2021, 2: 2100049. | 
																													
																						| [5] | ZHU J D, ZHANG T, YANG Y C, et al. A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 2020, 7: 011312. | 
																													
																						| [6] | NGUYEN N A, SCHNEEGANS O, SALOT R, et al. An ultralow power LixTiO2-based synaptic transistor for scalable neuromorphic computing. Advanced Electronic Materials, 2022,  8(12):2200607. DOI    
																																					URL
 | 
																													
																						| [7] | ZHANG W Q, GAO B, TANG J S, et al. Neuro-inspired computing chips. Nature Electronics, 2020, 3: 371. | 
																													
																						| [8] | XU H, LU J K, LI Y, et al. Improvement of weight stability in Li-ion-based electrolyte-gated transistor synapse by silica protective process. Applied Physics Letters, 2022,  121(11):113505. DOI    
																																					URL
 | 
																													
																						| [9] | LEE H, RYU D G, LEE G, et al. Vertical metal-oxide electrochemical memory for high-density synaptic array based high-performance neuromorphic computing. Advanced Electronic Materials, 2022,  8(8):2200378. DOI    
																																					URL
 | 
																													
																						| [10] | NAYEON K, HEEBUM K, HYUN W K, et al. Understanding synaptic characteristics of nonvolatile analog redox transistor based on mobile ion-modulated-electrolyte thickness model for neuromorphic applications. Applied Physics Letters, 2022,  121(7):072105. DOI    
																																					URL
 | 
																													
																						| [11] | LEE J, NIKAM R D, KWAK M, et al. Improved synaptic characteristics of oxide-based electrochemical random access memory at elevated temperatures using integrated micro-heater. IEEE Transactions on Electron Devices, 2022, 69: 2218. DOI    
																																					URL
 | 
																													
																						| [12] | REVANNATH D N, LEE J, CHOI W, et al. Ionic sieving through one-atom-thick 2D material enables analog nonvolatile memory for neuromorphic computing. Small, 2021,  17(44):2103543. DOI    
																																					URL
 | 
																													
																						| [13] | FENG G, JIANG J, ZHAO Y H, et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Advanced Materials, 2020,  32(6):1906171. DOI    
																																					URL
 | 
																													
																						| [14] | LEE J, NIKAM R D, KWAK M, et al. Strategies to improve the synaptic characteristics of oxygen-based electrochemical random-access memory based on material parameters optimization. ACS Applied Materials & Interfaces, 2022,  14(11):13450. | 
																													
																						| [15] | CHENG Y C, LI H, LIU B, et al. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small, 2020,  16(45):2005217. DOI    
																																					URL
 | 
																													
																						| [16] | LI Y, LU J K, SHANG D S, et al. Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Advanced Materials, 2020,  32(47):2003018. DOI    
																																					URL
 | 
																													
																						| [17] | LI Y, XUAN Z H, LU J K, et al. One transistor one electrolyte-gated transistor based spiking neural network for power-efficient neuromorphic computing system. Advanced Functional Materials, 2021,  31(26):2100042. DOI    
																																					URL
 | 
																													
																						| [18] | LI Y, XU H, LU J K, et al. Electrolyte-gated transistors with good retention for neuromorphic computing. Applied Physics Letters, 2022,  120(2):021901. DOI    
																																					URL
 | 
																													
																						| [19] | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013,  12(6):518. DOI
 | 
																													
																						| [20] | GRIFFITH K J, FORSE A C, GRIFFIN J M, et al. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. Journal of the American Chemical Society, 2016,  138(28):8888. DOI    
																																					URL
 | 
																													
																						| [21] | PRADEP P A, WADE G R. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. The Journal of Neuroscience, 1996,  16(18):5661. DOI    
																																					URL
 | 
																													
																						| [22] | ROBERT S Z, REGEHR W G. Short-term synaptic plasticity. Annual Review of Physiology, 2002, 64: 355. | 
																													
																						| [23] | WANG I T, CHANG C C, CHIU L W, et al. 3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology, 2016,  27(36):365204. DOI    
																																					URL
 | 
																													
																						| [24] | JANG J W, PARK S, BURR G W, et al. Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Letters, 2015,  36(5):457. DOI    
																																					URL
 | 
																													
																						| [25] | MCGANN J P. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? Learning & Memory, 2015,  22(11):567. | 
																													
																						| [26] | TRAXLER J, MADDEN V J, MOSELEY G L, et al. Modulating pain thresholds through classical conditioning. PeerJ, 2019, 7: 6486. | 
																													
																						| [27] | MAURICIO R P, BITTERMAN M E. The role of contingency in classical conditioning. Psychological Review, 1990,  97(3):396. PMID
 | 
																													
																						| [28] | YU F, ZHU L Q, XIAO H, et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Advanced Functional Materials, 2018,  28(44):1804025. DOI    
																																					URL
 |