无机材料学报 ›› 2023, Vol. 38 ›› Issue (4): 387-398.DOI: 10.15541/jim20220760
• 专栏:神经形态材料与器件(特邀编辑:万青) • 上一篇 下一篇
收稿日期:
2022-12-19
修回日期:
2023-01-18
出版日期:
2023-04-20
网络出版日期:
2023-04-18
通讯作者:
孙林锋, 教授. E-mail: sunlinfeng@bit.edu.cn作者简介:
游钧淇(2000-), 男, 硕士研究生. E-mail: 3120221530@bit.edu.cn
基金资助:
YOU Junqi1(), LI Ce1, YANG Dongliang1, SUN Linfeng1,2()
Received:
2022-12-19
Revised:
2023-01-18
Published:
2023-04-20
Online:
2023-04-18
Contact:
SUN Linfeng, professor. E-mail: sunlinfeng@bit.edu.cnAbout author:
YOU Junqi (2000-), male, Master candidate. E-mail: 3120221530@bit.edu.cn
Supported by:
摘要:
忆阻器可以在单一器件上实现存储和计算功能, 成为打破冯·诺依曼瓶颈的核心电子元器件之一。它凭借独特的易失性/非易失性电阻特性, 可以很好地模拟大脑活动中的突触/神经元的功能。此外, 基于金属氧化物的忆阻器与传统的互补金属氧化物半导体(CMOS)工艺兼容, 受到了广泛关注。近年来, 研究提出了多种基于单介质层结构的金属氧化物忆阻器, 但仍然存在高低阻态不稳定、开关电压波动大和循环耐久性差等问题。在此基础上, 研究人员通过在金属氧化物忆阻器中引入双介质层成功优化了忆阻器的性能。本文首先详细介绍了氧化物双介质层忆阻器的优势, 阐述了氧化物双介质层忆阻器的阻变机理和设计思路, 并进一步介绍了氧化物双介质层忆阻器在神经形态计算中的应用。本文将为设计更高性能的氧化物双介质层忆阻器起到一定的启示作用。
中图分类号:
游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398.
YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications[J]. Journal of Inorganic Materials, 2023, 38(4): 387-398.
图1 氧化物双介质层忆阻器与氧化物单介质层忆阻器的结构和性能对比
Fig. 1 Comparison of the structure and performance between the single/double dielectric layer metal-oxide memristor (a, d) Schematic diagrams for (a) single and (d) double dielectric layer metal-oxide memristors; (b, e) Comparison of I-V curves between (b) ZrO2-based memristor and (e) Ta2O5/ZrO2-based memristor with bi-layer structure exhibiting more uniform switching voltage[17]; (c, f) Comparison of the endurance between (c) HfO2-based memristor and (f) HfO2:Al/HfO2-based memristor with double dielectric layer exhibiting better cycling endurance[18]
Memristor structure | Range of Set voltage, ΔVSet/V | Range of Reset voltage, ΔVReset/V | Endurance | On/Off ratio | Retention/s | Ref. | |
---|---|---|---|---|---|---|---|
Single dielectric layer | Ta/ZrO2/TiN | -1.0 ~-1.6 (0.6) | 0.8 ~ 1.5 (0.7) | 100 | 102 | - | [ |
Cu/Al2O3/Pt | 0.4 ~ 1.2 (0.8) | -0.1 ~-0.8 (0.7) | 2×103 | 105 | 105 | [ | |
Ag/ZnO/Pt | 0.3 ~ 1.0 (0.7) | -0.4 ~-0.8 (0.4) | 102 | 50 | 104 | [ | |
TaN/Ta2O5/Pt | 2.0 ~ 4.5 (2.5) | -2.5 ~-4.5 (2) | 104 | - | 104 | [ | |
Ta/ZrO2/Pt | 0.4 ~ 2.0 (1.6) | -0.4 ~-1.0 (0.6) | 100 | - | - | [ | |
Double dielectric layer | Ag/SiO2/Ta2O5/Pt | 0.14 ~ 0.24 (0.1) | -0.06 ~-0.14 (0.08) | 103 | 103 | 104 | [ |
Ta/ZrO2/ZTO/TiN | -0.8 ~-1.2 (0.4) | 0.8 ~ 1.2 (0.4) | 105 | 102 | 3×103 | [ | |
Ta/Ta2O5/ZrO2/Pt | 0.7 ~ 1.2 (0.5) | -0.5 ~-0.8 (0.3) | 106 | 102 | 104 | [ | |
TaN/Ta2O5/WO3/Pt | 1.6 ~ 2.3 (0.7) | -1.9 ~-2.5 (0.6) | 109 | - | 106 | [ | |
Ti/HfO2/TiOx/Pt | -0.8 ~-1.1 (0.3) | 1.4 ~ 1.5 (0.1) | 107 | 103 | 105 | [ |
表1 氧化物单介质层忆阻器与氧化物双介质层忆阻器性能参数对比
Table 1 Performance comparison of the single/double dielectric layer metal-oxide memristors
Memristor structure | Range of Set voltage, ΔVSet/V | Range of Reset voltage, ΔVReset/V | Endurance | On/Off ratio | Retention/s | Ref. | |
---|---|---|---|---|---|---|---|
Single dielectric layer | Ta/ZrO2/TiN | -1.0 ~-1.6 (0.6) | 0.8 ~ 1.5 (0.7) | 100 | 102 | - | [ |
Cu/Al2O3/Pt | 0.4 ~ 1.2 (0.8) | -0.1 ~-0.8 (0.7) | 2×103 | 105 | 105 | [ | |
Ag/ZnO/Pt | 0.3 ~ 1.0 (0.7) | -0.4 ~-0.8 (0.4) | 102 | 50 | 104 | [ | |
TaN/Ta2O5/Pt | 2.0 ~ 4.5 (2.5) | -2.5 ~-4.5 (2) | 104 | - | 104 | [ | |
Ta/ZrO2/Pt | 0.4 ~ 2.0 (1.6) | -0.4 ~-1.0 (0.6) | 100 | - | - | [ | |
Double dielectric layer | Ag/SiO2/Ta2O5/Pt | 0.14 ~ 0.24 (0.1) | -0.06 ~-0.14 (0.08) | 103 | 103 | 104 | [ |
Ta/ZrO2/ZTO/TiN | -0.8 ~-1.2 (0.4) | 0.8 ~ 1.2 (0.4) | 105 | 102 | 3×103 | [ | |
Ta/Ta2O5/ZrO2/Pt | 0.7 ~ 1.2 (0.5) | -0.5 ~-0.8 (0.3) | 106 | 102 | 104 | [ | |
TaN/Ta2O5/WO3/Pt | 1.6 ~ 2.3 (0.7) | -1.9 ~-2.5 (0.6) | 109 | - | 106 | [ | |
Ti/HfO2/TiOx/Pt | -0.8 ~-1.1 (0.3) | 1.4 ~ 1.5 (0.1) | 107 | 103 | 105 | [ |
图2 氧化物双介质层忆阻器在构建神经网络方面的性能优势
Fig. 2 Advantages of the double dielectric layer metal-oxide memristor in building neural network (a) I-V curves of Pt/Al2O3/TaOx/Ta memristor with self-rectifying characteristic[26]; (b) Comparison of the pulse response between the HfO2 and the AlOx/HfO2-based memristor[30]
图3 基于电场局域化效应的氧化物双介质层忆阻器的机制与性能[14]
Fig. 3 Mechanism and characteristic of the double dielectric layer metal-oxide memristor based on the localization effect of electric field[14] (a) Schematic illustration for the switching mechanism of Ag/SiO2/Ta2O5/Pt memristor; (b) I-V characteristic of Ag/SiO2/Ta2O5/Pt memristor
图4 基于氧空位梯度的氧化物双介质层器件的两种机制和性能对比
Fig. 4 Two mechanisms and characteristics comparison of the double dielectric layer metal-oxide memristor based on oxygen vacancy gradient (a, b) Schematic diagrams of the resistance switching mechanism with (a) the structure of W/AlOx/AlOy/Pt memristor[47], (b) Ti/HfO2/TiOx/Pt memristor[23]; (c, d) Endurance of W/AlOx/AlOy/Pt memristor[47] and Ti/HfO2/TiOx/Pt memristor[23], and the Ti/HfO2/TiOx/Pt memristor with transition layer exhibiting more stable resistance states
图5 基于焦耳热效应的氧化物双介质层忆阻器的机制与性能[57]
Fig. 5 Mechanism and performance of the double dielectric layer metal-oxide memristor based on Joule heating effect[57] (a) Schematic diagrams of the switching mechanism of Ta/ZrO2(Y)/Ta2O5/TiN memristor; (b) I-V characteristic of Ta/ZrO2(Y)/Ta2O5/TiN memristor with nonlinear low-resistance state
图6 氧化物双介质层忆阻器实现线性对称的脉冲响应的机制[58]
Fig. 6 Mechanism of the double dielectric layer metal-oxide memristor with the linear symmetrical pulse response[58] (a) Schematic representation of the switching mechanism of Ag/SiO2/VOx/Pt memristor; (b) Pulse response of Ag/SiO2/VOx/Pt memristor represents highly linear and symmetric properties
图7 基于氧化物双介质层的忆阻器实现数据集分类[51]
Fig. 7 Data set classification using memristor based on double dielectric layer metal-oxide[51] (a) Schematic of Pd/TaOx/Ta2O5/Pd memristor crossbar array; (b, c) The initial data and classification results of the data set
图8 氧化物双介质层忆阻器实现语音识别[61]
Fig. 8 Demonstration of speech recognition using double dielectric layer metal-oxide memristor[61] (a) Schematic of the memristor-based reservoir computing system; (b) Diagram of Ti/TiOx/TaOy/Pt memristor structure; (c) Typical audio waveform of digit 9; (d) Recognition error rate of speech varies as a function of the mask length with error bar representing variation between memristor devices
图9 氧化物双介质层忆阻器实现图像识别
Fig. 9 Demonstration of image recognition using double dielectric layer metal-oxide memristor (a) SEM image of the 64×64 memristor crossbar array; (b) All experimental output currents for the digit “7”[59]; (c) Recognition diagrams of conductance and synaptic weights of digit “3”; (d) Evolution of the recognition accuracy of the MNIST under different synaptic coupling and training epochs[62]
[1] |
CHUA L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory, 1971, 18(5):507.
DOI URL |
[2] |
STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found. Nature, 2008, 453(7191):80.
DOI |
[3] | KANG J, KIM T, HU S, et al. Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing. Nat. Commun., 2022, 13: 4040. |
[4] |
CHANG T, JO S H, LU W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano, 2011, 5(9):7669.
DOI PMID |
[5] |
JO S H, CHANG T, EBONG I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10(4):1297.
DOI PMID |
[6] |
WRIGHT C D, WANG L, AZIZ M M, et al. Phase-change processors, memristors and memflectors. Phys. Status Solidi B, 2012, 249(10): 1978.
DOI URL |
[7] | YOSHIDA M, SUZUKI R, ZHANG Y, et al. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci Adv., 2015, 1(9):e1500606. |
[8] |
SOUSA R C, PREJBEANU I L. Non-volatile magnetic random access memories (MRAM). Comptes Rendus Physique, 2005, 6(9):1013.
DOI URL |
[9] | SHIH M C, WANG C Y, LEE Y H, et al. Reliability study of perpendicular STT-MRAM as emerging embedded memory qualified for reflow soldering at 260 ℃. 2016 IEEE Symposium on VLSI Technology, Honolulu, 2016: 1-2. |
[10] |
MANCHON A, ŽELEZNÝ J, MIRON I M. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys., 2019, 91(3):035004.
DOI URL |
[11] | HUANG Y T, CHEN N K, LI Z Z, et al. Two-dimensional In2Se3: a rising advanced material for ferroelectric data storage. InfoMat, 2022, 4(8):e12341. |
[12] |
SETTER N, DAMJANOVIC D, ENG L M, et al. Ferroelectric thin films: review of materials, properties and applications. J. Appl. Phys., 2006, 100(10):051606.
DOI URL |
[13] | VU Q A, KIM H, NGUYEN V L, et al. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater., 2017, 29(44):1703363. |
[14] |
GUO X, WANG Q, LÜ X, et al. SiO2/Ta2O5 heterojunction ECM memristors: physical nature of their low voltage operation with high stability and uniformity. Nanoscale, 2020, 12(7):4320.
DOI URL |
[15] | ISMAIL M, ABBAS H, CHOI C, et al. Stabilized and reset-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J. Alloys Compd., 2020, 835: 155256. |
[16] |
ANDREEVA N, MAZING D, ROMANOV A, et al. Contact engineering approach to improve the linearity of multilevel memristive devices. Micromachines, 2021, 12(12):1567.
DOI URL |
[17] | ISMAIL M, ABBAS H, MAHATA C, et al. Optimizing the thickness of Ta2O5 interfacial barrier layer to limit the oxidization of Ta ohmic interface and ZrO2 switching layer for multilevel data storage. J. Mater. Sci. Technol., 2022, 106: 98. |
[18] | ZHU Y L, XUE K H, CHENG X M, et al. Uniform and robust TiN/HfO2/Pt memristor through interfacial Al-doping engineering. Appl. Surf. Sci., 2021, 550: 149274. |
[19] | SU C, SHAN L, YANG D, et al. Effects of heavy ion irradiation on Cu/Al2O3/Pt CBRAM devices. Microelectronic Eng., 2021, 247: 111600. |
[20] | WU M C, TING Y H, CHEN J Y, et al. Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays. Adv. Sci., 2019, 6(24):1902363. |
[21] |
RAJASEKARAN S, SIMANJUNTAK F M, CHANDRASEKARAN S, et al. Flexible Ta2O5/WO3-based memristor synapse for wearable and neuromorphic applications. IEEE Electron Device Lett., 2021, 43(1):9.
DOI URL |
[22] |
ISMAIL M, ABBAS H, SOKOLOV A, et al. Emulating synaptic plasticity and resistive switching characteristics through amorphous Ta2O5 embedded layer for neuromorphic computing. Ceram. Int., 2021, 47(21):30764.
DOI URL |
[23] |
LIU J, YANG H, JI Y, et al. An electronic synaptic device based on HfO2TiOx bilayer structure memristor with self-compliance and deep-RESET characteristics. Nanotechnology, 2018, 29(41):415205.
DOI URL |
[24] |
XIA Q, YANG J J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater., 2019, 18(4):309.
DOI PMID |
[25] |
CHEN Y C, LIN C C, CHANG Y F. Post-moore memory technology: sneak path current (SPC) phenomena on RRAM crossbar array and solutions. Micromachines, 2021, 12(1):50.
DOI URL |
[26] |
REN S G, NI R, HUANG X D, et al. Pt/Al2O3/TaOx/Ta self-rectifying memristor with record-low operation current (<2 pA), low power (fJ), and high scalability. IEEE Trans. Electron Devices, 2022, 69(2):838.
DOI URL |
[27] |
XI Y, GAO B, TANG J, et al. In-memory learning with analog resistive switching memory: a review and perspective. Proceedings of the IEEE, 2021, 109(1):14.
DOI URL |
[28] | CHEN P Y, PENG X, YU S. NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2017: 6.1.1-6.1.4. |
[29] | CHEN P Y, YU S. Technological benchmark of analog synaptic devices for neuroinspired architectures. IEEE Des. Test, 2019, 36(3):31. |
[30] |
WOO J, MOON K, SONG J, et al. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett., 2016, 37(8):994.
DOI URL |
[31] | 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21):218504. |
[32] |
YANG J J, MIAO F, PICKETT M D, et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 2009, 20(21):215201.
DOI URL |
[33] |
MAO G Q, XUE K H, SONG Y Q, et al. Oxygen migration around the filament region in HfOxmemristors. AIP Advances, 2019, 9(10):105007.
DOI URL |
[34] |
YANG Y, LU W. Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale, 2013, 5(21):10076.
DOI PMID |
[35] |
ZHANG Z, YANG D, LI H, et al. 2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorph. Comput. Eng., 2022, 2(3):032004.
DOI |
[36] |
CELANO U, GOUX L, BELMONTE A, et al. Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett., 2014, 14(5):2401.
DOI PMID |
[37] | YANG Y, GAO P, GABA S, et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun., 2012, 3: 732. |
[38] | LI C, GAO B, YAO Y, et al. Direct observations of nanofilament evolution in switching processes in HfO2 based resistive random access memory by in situ TEM studies. Adv. Mater., 2017, 29(10):1602976. |
[39] |
MIAO F, STRACHAN J P, YANG J J, et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high performance memristor. Adv. Mater., 2011, 23(47):5633.
DOI URL |
[40] | 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21):217701. |
[41] | DESHMUKH S, ROJO M M, YALON E, et al. Direct measurement of nanoscale filamentary hot spots in resistive memory devices. Sci. Adv., 2022, 8(13):eabk1514. |
[42] |
STRACHAN J P, STRUKOV D B, BORGHETTI J, et al. The switching location of a bipolar memristor: chemical, thermal and structural mapping. Nanotechnology, 2011, 22(25):254015.
DOI URL |
[43] | WU F, SI S, CAO P, et al. Interface engineering via MoS2insertion layer for improving resistive switching of conductive bridging random access memory. Adv. Electron. Mater., 2019, 5(4):1800747. |
[44] | CHEN Y Y, ROELOFS R, REDOLFI A, et al. Tailoring switching and endurance/retention reliability characteristics of HfO2/Hf RRAM with Ti, Al, Si dopants. 2014 Symposium on VLSI Technology: Digest of Technical Papers, Honolulu, 2014: 1-2. |
[45] |
WANG B, XUE K H, SUN H J, et al. Performance enhancement of TaOx resistive switching memory using graded oxygen content. Appl. Phys. Lett., 2018, 113(18):183501.
DOI URL |
[46] |
LANDON C D, WILKE R H T, BRUMBACH M T, et al. Thermal transport in tantalum oxide films for memristive applications. Appl. Phys. Lett., 2015, 107(2):023108.
DOI URL |
[47] |
HUANG X D, LI Y, LI H Y, et al. Enhancement of DC/AC resistive switching performance in AlOx memristor by two technique bilayer approach. Appl. Phys. Lett., 2020, 116(17):173504.
DOI URL |
[48] | DUAN Q, XU L, ZHU J, et al. Resistive switching and synaptic plasticity in HfO2-based memristors with single-layer and bilayer structures. 2018 China Semiconductor Technology International Conference (CSTIC), Shanghai, 2018: 1-3. |
[49] |
HUANG X D, LI Y, LI H Y, et al. Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlOx/Al2O3/Pt bilayer memristor. IEEE Electron Device Lett., 2020, 41(4):549.
DOI URL |
[50] | HUANG X D, LI Y, LI H Y, et al. Low-power, high speed and high uniform switching in AlOx-based memristor using homogeneous bilayer structure for memcomputing. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Chengdu, 2019: 113. |
[51] | CHOI S, SHERIDAN P, LU W D. Data clustering using memristor networks. Sci. Rep., 2015, 5: 10492. |
[52] | WANG X, LIAO W, RAO T, et al. Resistive switching in sputtered ZnO/IGZO heterostructure memristor. 2022 IEEE 5th International Conference on Electronics Technology (ICET), Chengdu, 2022: 113. |
[53] |
XU Z, YU L, XU X, et al. Effect of oxide/oxide interface on polarity dependent resistive switching behavior in ZnO/ZrO2 heterostructures. Appl. Phys. Lett., 2014, 104(19):192903.
DOI URL |
[54] | ZHU J, LEE J W, LEE H, et al. Probing vacancy behavior across complex oxide heterointerfaces. Sci. Adv., 2019, 5(2):eaau8467. |
[55] |
CHANDRASEKARAN S, SIMANJUNTAK F M, SAMINATHAN R, et al. Improving linearity by introducing Al in HfO2 as a memristor synapse device. Nanotechnology, 2019, 30(44):445205.
DOI URL |
[56] | ZHANG Z, CAI Y, YU M, et al. A tantalum oxide memristor for artificial synapse applications. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, 2014: 1. |
[57] | MIKHAYLOV A, BELOV A, KOROLEV D, et al. Multilayer metal-oxide memristive device with stabilized resistive switching. Adv. Mater. Technol., 2020, 5(1):1900607. |
[58] |
BOUSOULAS P, SAKELLAROPOULOS D, TSOUKALAS D, et al. Tuning the analog synaptic properties of forming free SiO2 memristors by material engineering. Appl. Phys. Lett., 2021, 118(14):143502.
DOI URL |
[59] | KIM H, MAHMOODI M R, NILI H, et al. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun., 2021, 12: 5198. |
[60] |
WU F, CAO P, PENG Z, et al. Memristor based on TiOx/Al2O3 bilayer as flexible artificial synapse for neuromorphic electronics. IEEE Trans. Electron Device, 2021, 69(1):375.
DOI URL |
[61] | ZHONG Y, TANG J, LI X, et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun., 2021, 12: 408. |
[62] |
CHOI S, JANG S, MOON J H, et al. A self-rectifying TaOy/ nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater., 2018, 10(12):1097.
DOI |
[63] | KIM H J, PARK T H, YOON K J, et al. Fabrication of a Cu-cone-shaped cation source inserted conductive bridge random access memory and its improved switching reliability. Adv. Funct. Mater., 2019, 29(8):1806278. |
[64] | KIM H J, KIM J, PARK T G, et al. Multi-level control of conductive filament evolution and enhanced resistance controllability of the Cu-cone structure embedded conductive bridge random access memory. Adv. Electron. Mater., 2022, 8(8):2100209. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 方仁瑞, 任宽, 郭泽钰, 徐晗, 张握瑜, 王菲, 张培文, 李悦, 尚大山. 基于氧化物基电解质栅控晶体管突触的关联学习[J]. 无机材料学报, 2023, 38(4): 399-405. |
[8] | 王彤宇, 冉皓丰, 周广东. 氧化铁忆阻器中缺陷态诱导的模拟型阻变及突触双脉冲易化特性[J]. 无机材料学报, 2023, 38(4): 437-444. |
[9] | 王靖瑜, 万昌锦, 万青. 基于Al2O3/Chitosan叠层栅介质的双栅IGZO神经形态晶体管[J]. 无机材料学报, 2023, 38(4): 445-451. |
[10] | 邱海洋, 苗广潭, 李辉, 栾奇, 刘国侠, 单福凯. 等离子体处理对突触晶体管长程塑性的影响[J]. 无机材料学报, 2023, 38(4): 406-412. |
[11] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[12] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[13] | 田雨, 朱小健, 孙翠, 叶晓羽, 刘慧媛, 李润伟. 本征可拉伸阈值型忆阻器及其神经元仿生特性[J]. 无机材料学报, 2023, 38(4): 413-420. |
[14] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[15] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||