无机材料学报 ›› 2023, Vol. 38 ›› Issue (4): 387-398.DOI: 10.15541/jim20220760

• 专栏:神经形态材料与器件(特邀编辑:万青) • 上一篇    下一篇

氧化物双介质层忆阻器的设计及应用

游钧淇1(), 李策1, 杨栋梁1, 孙林锋1,2()   

  1. 1.北京理工大学 物理学院, 先进光电量子结构设计与测量教育部重点实验室, 北京 100081
    2.北京理工大学 长三角研究院, 嘉兴 314019
  • 收稿日期:2022-12-19 修回日期:2023-01-18 出版日期:2023-04-20 网络出版日期:2023-04-18
  • 通讯作者: 孙林锋, 教授. E-mail: sunlinfeng@bit.edu.cn
  • 作者简介:游钧淇(2000-), 男, 硕士研究生. E-mail: 3120221530@bit.edu.cn
  • 基金资助:
    北京市自然科学基金重点专题项目(Z210006);国家自然科学基金青年科学基金(12104051)

Double Dielectric Layer Metal-oxide Memristor: Design and Applications

YOU Junqi1(), LI Ce1, YANG Dongliang1, SUN Linfeng1,2()   

  1. 1. MOE Key Laboratory of Advanced Optoetectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing 100081, China
    2. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
  • Received:2022-12-19 Revised:2023-01-18 Published:2023-04-20 Online:2023-04-18
  • Contact: SUN Linfeng, professor. E-mail: sunlinfeng@bit.edu.cn
  • About author:YOU Junqi (2000-), male, Master candidate. E-mail: 3120221530@bit.edu.cn
  • Supported by:
    Key Research Program of Beijing Natural Science Foundation(Z210006);Young Scientists Fund of the National Natural Science Foundation of China(12104051)

摘要:

忆阻器可以在单一器件上实现存储和计算功能, 成为打破冯·诺依曼瓶颈的核心电子元器件之一。它凭借独特的易失性/非易失性电阻特性, 可以很好地模拟大脑活动中的突触/神经元的功能。此外, 基于金属氧化物的忆阻器与传统的互补金属氧化物半导体(CMOS)工艺兼容, 受到了广泛关注。近年来, 研究提出了多种基于单介质层结构的金属氧化物忆阻器, 但仍然存在高低阻态不稳定、开关电压波动大和循环耐久性差等问题。在此基础上, 研究人员通过在金属氧化物忆阻器中引入双介质层成功优化了忆阻器的性能。本文首先详细介绍了氧化物双介质层忆阻器的优势, 阐述了氧化物双介质层忆阻器的阻变机理和设计思路, 并进一步介绍了氧化物双介质层忆阻器在神经形态计算中的应用。本文将为设计更高性能的氧化物双介质层忆阻器起到一定的启示作用。

关键词: 忆阻器, 突触, 神经元, 神经形态计算, 双介质层金属氧化物, 综述

Abstract:

Memristor, fusing the functions of storage and computing within a single device, is one of the core electronic components to solve the bottleneck of von Neumann architecture. With the unique volatile/non-volatile resistive switching characteristic, memristor can simulate the function of synapses/neurons in brain well. In addition, due to the compatibility with traditional complementary metal-oxide-semiconductor (CMOS) processes, metal-oxide-based memristors have received a lot of attention. In recent years, many kinds of metal-oxide memristors based on single dielectric layer have been proposed. However, there are still some problems such as the instability of switching voltage, fluctuation of high/low resistance state and poor endurance of memristive device. Thus, the researchers have successfully optimized the device performance by introducing the double dielectric layer into the metal-oxide memristors. In this article, we introduce the advantages of double dielectric layers-based metal-oxide memristors, and discuss their mechanism and design of double dielectric layers-based metal-oxide memristors. Eventually, we introduce their potential applications in neuromorphic computing. This review provides some enlightenment on how to design high-performance metal-oxide memristor based on double dielectric layers.

Key words: memristor, synapse, neuron, neuromorphic computing, double dielectric layer metal-oxide, review

中图分类号: