无机材料学报 ›› 2024, Vol. 39 ›› Issue (5): 561-568.DOI: 10.15541/jim20230433 CSTR: 32189.14.10.15541/jim20230433
所属专题: 【材料计算】计算材料(202409)
• 研究快报 • 上一篇
收稿日期:
2023-09-21
修回日期:
2023-11-22
出版日期:
2024-05-20
网络出版日期:
2024-01-31
通讯作者:
宋二红, 副研究员 E-mail: ehsong@mail.sic.ac.cn;作者简介:
李红兰(1983-), 女, 博士研究生. E-mail: openfoam@just.edu.cn
基金资助:
LI Honglan1(), ZHANG Junmiao1, SONG Erhong2(
), YANG Xinglin1(
)
Received:
2023-09-21
Revised:
2023-11-22
Published:
2024-05-20
Online:
2024-01-31
Contact:
SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn;About author:
LI Honglan (1983-), female, PhD candidate. E-mail: openfoam@just.edu.cn
Supported by:
摘要:
工业界普遍采用Haber-Bosch方法在高温(400~600 ℃)和高压(150~300 atm, 1 atm= 0.101325 MPa)条件下催化氮气裂解和加氢而合成氨气(NH3), 这不仅消耗大量能源, 也给环境造成很大污染。为改变这种状况, 探索常温常压条件下合成NH3的全新途径已成为研究热点。电催化还原N2合成NH3是尚待探索的重点方向之一。本研究利用密度泛函理论计算, 探讨了过渡金属元素(如Fe, Nb, Mo, W, Ru)和非金属元素(如B, P, S)共掺杂石墨烯作为该方向催化剂的可行性。结果表明, Mo和S(Mo/S)共掺杂石墨烯在NH3合成中具有极低的电极电势(仅为0.47 V), 其速率控制步骤涉及的中间产物为*NNH。NH3合成电势比析氢反应的电势(0.51 V)低, 说明N2还原制备NH3具有选择性。经从头算的分子动力学计算验证, Mo/S共掺杂石墨烯体系在室温下具有良好的热力学稳定性。电子结构分析进一步揭示, 过渡金属电子转移能力对高效N2电催化还原活性具有关键影响, 可通过调控非金属元素对过渡金属周边配位环境的影响, 优化过渡金属中心的电子结构, 从而提高催化性能。
中图分类号:
李红兰, 张俊苗, 宋二红, 杨兴林. Mo/S共掺杂的石墨烯用于合成氨: 密度泛函理论研究[J]. 无机材料学报, 2024, 39(5): 561-568.
LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study[J]. Journal of Inorganic Materials, 2024, 39(5): 561-568.
Fig. 1 Structure, optimized lengths, binding energy and partial density of states (PDOS)of TMX (a) Atomic structure diagram of TMX doped graphene; (b) Optimized lengths, lTMB, of the TM-X bonds; (c) Binding energy, Eb(TMX), of TMX doped graphene; (d) PDOS between the d band of Mo and the p band of X for MoX doped graphene; Colorful figures are available on website
Fig. 2 Adsorption behavior of the nitrogen molecule on graphene (a) Schematic diagram of N2 adsorption structures; (b) Difference in the adsorption free energy of N2 and H, ΔΔGads= Gads(*N2)-Gads(*H), as a function of Gads(*N2); (c) PDOS between the d band of Mo and the p band of N2 for MoB, MoP, and MoS doped graphene; (d) Charge, QN2, and bond length, lN2, of the N2 adsorbate; Colorful figures are available on website
Fig. 3 Free energy and plotting UL(NRR) vs UL(HER) of the catalysts (a, b) Free energy profiles for NRR of MoS doped graphene via (a) distal pathway and (b) alternating pathway; (c) Free energy profiles for HER of WS, WP, MoS, MoP, and NbB doped graphene; (d) Comparison between limiting potential of NRR and reduction potential of HER; Colorful figures are available on website
Fig. 4 Variation of Mulliken charge and energy of the catalysts (a-c) Mulliken charge variation of (a) MoB, (b) MoP, and (c) MoS via the distal pathway; (d) Variation of temperature and energy of MoS during the AIMD simulation
QTM | QX | ɛd | |||||||
---|---|---|---|---|---|---|---|---|---|
B | P | S | B | P | S | B | P | S | |
Fe | -0.133 | -0.015 | 0.061 | 0.172 | 0.427 | -0.100 | -1.007 | -1.330 | -1.383 |
Nb | 0.566 | 0.486 | 0.628 | 0.123 | 0.437 | -0.147 | -1.489 | -2.475 | -2.157 |
Mo | 0.234 | 0.147 | 0.267 | 0.188 | 0.479 | -0.107 | -1.556 | -1.930 | -1.820 |
Ru | -0.187 | -0.207 | -0.032 | 0.315 | 0.721 | -0.046 | -1.632 | -2.078 | -1.787 |
W | 0.247 | 0.137 | 0.265 | 0.189 | 0.482 | -0.108 | -1.669 | -2.135 | -1.915 |
Table S1 Mulliken charge Q (in e) of TM and X and the d band center ɛd (in eV) of TM in TMX-doped graphene
QTM | QX | ɛd | |||||||
---|---|---|---|---|---|---|---|---|---|
B | P | S | B | P | S | B | P | S | |
Fe | -0.133 | -0.015 | 0.061 | 0.172 | 0.427 | -0.100 | -1.007 | -1.330 | -1.383 |
Nb | 0.566 | 0.486 | 0.628 | 0.123 | 0.437 | -0.147 | -1.489 | -2.475 | -2.157 |
Mo | 0.234 | 0.147 | 0.267 | 0.188 | 0.479 | -0.107 | -1.556 | -1.930 | -1.820 |
Ru | -0.187 | -0.207 | -0.032 | 0.315 | 0.721 | -0.046 | -1.632 | -2.078 | -1.787 |
W | 0.247 | 0.137 | 0.265 | 0.189 | 0.482 | -0.108 | -1.669 | -2.135 | -1.915 |
B | P | S | |||||||
---|---|---|---|---|---|---|---|---|---|
Eb | Eint | Edef | Eb | Eint | Edef | Eb | Eint | Edef | |
Fe | -6.46 | -8.69 | 2.23 | -6.26 | -7.49 | 1.23 | -5.35 | -6.58 | 1.23 |
Nb | -5.19 | -8.06 | 2.86 | -5.69 | -8.42 | 2.73 | -4.44 | -7.36 | 2.92 |
Mo | -6.71 | -9.83 | 3.12 | -6.95 | -9.95 | 2.99 | -5.80 | -8.89 | 3.09 |
Ru | -7.99 | -10.09 | 2.09 | -7.76 | -9.40 | 1.64 | -6.36 | -7.94 | 1.58 |
W | -5.67 | -9.04 | 3.37 | -5.71 | -8.96 | 3.26 | -4.52 | -7.89 | 3.37 |
Table S2 Binding energy Eb(TMX) (in eV), interaction energy Eint (in eV) and deformation energy Edef (in eV)
B | P | S | |||||||
---|---|---|---|---|---|---|---|---|---|
Eb | Eint | Edef | Eb | Eint | Edef | Eb | Eint | Edef | |
Fe | -6.46 | -8.69 | 2.23 | -6.26 | -7.49 | 1.23 | -5.35 | -6.58 | 1.23 |
Nb | -5.19 | -8.06 | 2.86 | -5.69 | -8.42 | 2.73 | -4.44 | -7.36 | 2.92 |
Mo | -6.71 | -9.83 | 3.12 | -6.95 | -9.95 | 2.99 | -5.80 | -8.89 | 3.09 |
Ru | -7.99 | -10.09 | 2.09 | -7.76 | -9.40 | 1.64 | -6.36 | -7.94 | 1.58 |
W | -5.67 | -9.04 | 3.37 | -5.71 | -8.96 | 3.26 | -4.52 | -7.89 | 3.37 |
System | Pathway | Gads(N2) | ΔG1 | ΔG2 | ΔG3 | ΔG4 | ΔG5 | ΔG6 | Gads(H) | UL(NRR) | UL(HER) |
---|---|---|---|---|---|---|---|---|---|---|---|
FeB | Distal | -0.45 | 0.27 | -0.36 | 1.11 | -2.22 | -0.74 | 0.46 | -0.38 | 0.81 | 0.38 |
Alternating | -0.45 | 0.27 | 0.81 | -1.38 | 0.58 | -2.23 | 0.46 | ||||
FeP | Distal | -0.57 | 0.98 | -0.35 | 0.60 | -0.84 | -1.28 | -0.88 | 0.03 | 0.98 | 0.03 |
Alternating | -0.57 | 0.98 | 0.15 | 2.42 | -0.32 | -4.12 | -0.88 | ||||
FeS | Distal | -0.46 | 0.82 | -0.25 | 0.67 | -0.91 | -1.36 | -0.76 | -0.06 | 0.82 | 0.06 |
Alternating | -0.46 | 0.82 | 0.17 | -0.52 | -0.35 | -1.16 | -0.76 | ||||
NbB | Distal | -0.15 | -1.99 | -0.15 | 0.54 | -1.63 | -1.21 | -0.53 | 0.15 | 0.54 | 0.15 |
Alternating | -0.15 | -1.99 | -0.07 | -0.59 | -0.44 | -1.36 | -0.53 | ||||
NbP | Distal | -0.20 | -2.00 | 2.41 | 0.57 | -1.62 | -0.81 | -0.54 | 0.15 | 2.41 | 0.15 |
Alternating | -0.20 | -2.00 | 3.02 | -0.75 | -0.11 | -1.63 | -0.54 | ||||
NbS | Distal | -0.31 | 0.74 | -0.50 | 0.39 | -1.47 | -0.78 | -0.42 | -0.16 | 0.74 | 0.16 |
Alternating | -0.31 | 0.74 | 0.16 | -0.69 | -0.08 | -1.74 | -0.42 | ||||
MoB | Distal | -0.69 | 0.85 | -0.39 | 0.01 | -1.01 | -0.80 | -0.60 | -0.29 | 0.85 | 0.29 |
Alternating | -0.69 | 0.85 | -0.04 | -0.56 | -0.31 | -1.28 | -0.60 | ||||
MoP | Distal | -0.67 | 0.49 | -0.24 | -0.41 | -0.58 | -0.65 | -0.45 | -0.42 | 0.49 | 0.42 |
Alternating | -0.67 | 0.49 | 0.35 | -0.79 | 0.03 | -1.46 | -0.45 | ||||
MoS | Distal | -0.69 | 0.47 | -0.22 | -0.54 | -0.42 | -0.67 | -0.33 | -0.51 | 0.47 | 0.51 |
Alternating | -0.69 | 0.47 | 0.51 | -0.90 | 0.14 | -1.59 | -0.33 | ||||
RuB | Distal | -0.27 | 0.76 | 0.20 | -0.47 | 0.14 | -1.22 | -1.00 | 0.14 | 0.76 | 0.14 |
Alternating | -0.27 | 0.76 | 0.52 | -0.63 | -0.37 | -0.88 | -1.00 | ||||
RuP | Distal | -0.34 | 1.26 | -0.09 | 0.05 | -0.53 | -1.33 | -0.92 | 0.43 | 1.26 | 0.43 |
Alternating | -0.34 | 1.26 | 0.02 | -0.19 | -0.76 | -0.97 | -0.92 | ||||
RuS | Distal | -0.58 | 1.38 | -0.55 | 0.32 | -0.48 | -1.36 | -0.99 | -0.23 | 1.38 | 0.23 |
Alternating | -0.58 | 1.38 | -0.24 | -0.20 | -0.70 | -0.92 | -0.99 | ||||
WB | Distal | -0.64 | 0.66 | -0.49 | -0.09 | -1.06 | -0.71 | -0.25 | -0.56 | 0.66 | 0.56 |
Alternating | -0.64 | 0.66 | 0.07 | -0.70 | 0.12 | -1.84 | -0.25 | ||||
WP | Distal | -0.79 | 0.32 | -0.45 | -0.35 | -0.80 | -0.45 | -0.10 | -0.84 | 0.32 | 0.84 |
Alternating | -0.79 | 0.32 | 0.46 | -0.84 | 0.34 | -2.01 | -0.10 | ||||
WS | Distal | -0.78 | 0.22 | -0.33 | -0.59 | -0.62 | -0.45 | 0.11 | -0.95 | 0.22 | 0.95 |
Alternating | -0.78 | 0.22 | 0.77 | -1.07 | 0.47 | -2.15 | 0.11 |
Table S3 Free energy changes of protonation steps ΔGi (i = 1,2, …, 6). Gads(N2) and Gads(H) are the free energy (in eV) of nitrogen and hydrogen adsorption, respectively. UL(NRR) and UL(HER) are the limiting potentials (in V) of the nitrogen reduction reaction (NRR) and hydrogen evolution reaction (HER), respectively
System | Pathway | Gads(N2) | ΔG1 | ΔG2 | ΔG3 | ΔG4 | ΔG5 | ΔG6 | Gads(H) | UL(NRR) | UL(HER) |
---|---|---|---|---|---|---|---|---|---|---|---|
FeB | Distal | -0.45 | 0.27 | -0.36 | 1.11 | -2.22 | -0.74 | 0.46 | -0.38 | 0.81 | 0.38 |
Alternating | -0.45 | 0.27 | 0.81 | -1.38 | 0.58 | -2.23 | 0.46 | ||||
FeP | Distal | -0.57 | 0.98 | -0.35 | 0.60 | -0.84 | -1.28 | -0.88 | 0.03 | 0.98 | 0.03 |
Alternating | -0.57 | 0.98 | 0.15 | 2.42 | -0.32 | -4.12 | -0.88 | ||||
FeS | Distal | -0.46 | 0.82 | -0.25 | 0.67 | -0.91 | -1.36 | -0.76 | -0.06 | 0.82 | 0.06 |
Alternating | -0.46 | 0.82 | 0.17 | -0.52 | -0.35 | -1.16 | -0.76 | ||||
NbB | Distal | -0.15 | -1.99 | -0.15 | 0.54 | -1.63 | -1.21 | -0.53 | 0.15 | 0.54 | 0.15 |
Alternating | -0.15 | -1.99 | -0.07 | -0.59 | -0.44 | -1.36 | -0.53 | ||||
NbP | Distal | -0.20 | -2.00 | 2.41 | 0.57 | -1.62 | -0.81 | -0.54 | 0.15 | 2.41 | 0.15 |
Alternating | -0.20 | -2.00 | 3.02 | -0.75 | -0.11 | -1.63 | -0.54 | ||||
NbS | Distal | -0.31 | 0.74 | -0.50 | 0.39 | -1.47 | -0.78 | -0.42 | -0.16 | 0.74 | 0.16 |
Alternating | -0.31 | 0.74 | 0.16 | -0.69 | -0.08 | -1.74 | -0.42 | ||||
MoB | Distal | -0.69 | 0.85 | -0.39 | 0.01 | -1.01 | -0.80 | -0.60 | -0.29 | 0.85 | 0.29 |
Alternating | -0.69 | 0.85 | -0.04 | -0.56 | -0.31 | -1.28 | -0.60 | ||||
MoP | Distal | -0.67 | 0.49 | -0.24 | -0.41 | -0.58 | -0.65 | -0.45 | -0.42 | 0.49 | 0.42 |
Alternating | -0.67 | 0.49 | 0.35 | -0.79 | 0.03 | -1.46 | -0.45 | ||||
MoS | Distal | -0.69 | 0.47 | -0.22 | -0.54 | -0.42 | -0.67 | -0.33 | -0.51 | 0.47 | 0.51 |
Alternating | -0.69 | 0.47 | 0.51 | -0.90 | 0.14 | -1.59 | -0.33 | ||||
RuB | Distal | -0.27 | 0.76 | 0.20 | -0.47 | 0.14 | -1.22 | -1.00 | 0.14 | 0.76 | 0.14 |
Alternating | -0.27 | 0.76 | 0.52 | -0.63 | -0.37 | -0.88 | -1.00 | ||||
RuP | Distal | -0.34 | 1.26 | -0.09 | 0.05 | -0.53 | -1.33 | -0.92 | 0.43 | 1.26 | 0.43 |
Alternating | -0.34 | 1.26 | 0.02 | -0.19 | -0.76 | -0.97 | -0.92 | ||||
RuS | Distal | -0.58 | 1.38 | -0.55 | 0.32 | -0.48 | -1.36 | -0.99 | -0.23 | 1.38 | 0.23 |
Alternating | -0.58 | 1.38 | -0.24 | -0.20 | -0.70 | -0.92 | -0.99 | ||||
WB | Distal | -0.64 | 0.66 | -0.49 | -0.09 | -1.06 | -0.71 | -0.25 | -0.56 | 0.66 | 0.56 |
Alternating | -0.64 | 0.66 | 0.07 | -0.70 | 0.12 | -1.84 | -0.25 | ||||
WP | Distal | -0.79 | 0.32 | -0.45 | -0.35 | -0.80 | -0.45 | -0.10 | -0.84 | 0.32 | 0.84 |
Alternating | -0.79 | 0.32 | 0.46 | -0.84 | 0.34 | -2.01 | -0.10 | ||||
WS | Distal | -0.78 | 0.22 | -0.33 | -0.59 | -0.62 | -0.45 | 0.11 | -0.95 | 0.22 | 0.95 |
Alternating | -0.78 | 0.22 | 0.77 | -1.07 | 0.47 | -2.15 | 0.11 |
Fig. S2 Reaction coordinate of N2 splitting catalyzed by MoP doped graphene Right up: structure of initial state (IS); Right middle: structure of transition state (TS); Right down: structure of final state (FS)
[1] |
ROSCA V, DUCA M, DE GROOT M T, et al. Nitrogen cycle electrocatalysis. Chemical Reviews, 2009, 109(6): 2209.
DOI PMID |
[2] | ZHAO S L, LU X Y, WANG L Z, et al. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Advanced Materials, 2019, 31(13): 1805369. |
[3] | ZHANG L, DING L, CHEN G, et al. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612. |
[4] |
GUO W, ZHANG K, LIANG Z, et al. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658.
DOI PMID |
[5] | HUANG L S, GU X L, ZHENG G F. Tuning active sites of MXene for efficient electrocatalytic N2 fixation. Chem, 2019, 5(1): 15. |
[6] | LING C Y, ZHANG Y H, QIANG L, et al. New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264. |
[7] | JIAO F, XU B. Electrochemical ammonia synthesis and ammonia fuel cells. Advanced Materials, 2019, 31(31): 1805173. |
[8] |
KITANO M, INOUE Y, YAMAZAKI Y, et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934.
DOI PMID |
[9] | LI J, CHEN S, QUAN F. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem, 2020, 6(4): 885. |
[10] | XI J, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Advanced Functional Materials, 2021, 31(12): 2008318. |
[11] | SHREYA M, YANG X X, SHAN W T, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods, 2020, 4(6): 1900821. |
[12] | ZHAO W H, CHEN L L, ZHANG W H, et al. Single Mo1(W1, Re1) atoms anchored in pyrrolic-N3 doped graphene as efficient electrocatalysts for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2021, 9(10): 6547. |
[13] | YANG Y, LIU J, WEI Z, et al. Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction. ChemCatChem, 2019, 11(12): 2821. |
[14] | CHOI C, BACK S, KIM. N Y, et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catalysis, 2018, 8(8): 7517. |
[15] | WU J, YANG L, LIU X, et al. ZrN6-doped graphene for ammonia synthesis: a density functional theory study. ChemPhysChem, 2022, 24(8): e202200864. |
[16] | ZHOU H Y, LI J C, WEN Z, et al. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping. Physical Chemistry Chemical Physics, 2019, 21(27): 14583. |
[17] |
LIU C, LI Q, WU C, et al. Single-boron catalysts for nitrogen reduction reaction. Journal of the American Chemical Society, 2019, 141(7): 2884.
DOI PMID |
[18] | ZHAO Z M, LONG Y, CHEN Y, et al. Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chemical Engineering Journal, 2021, 430(1): 132682. |
[19] | LI. Q Y, QIU S Y, LIU C G, et al. Computational design of single-molybdenum catalysts for the nitrogen reduction reaction. Journal of Physical Chemistry C, 2019, 123(4): 2347. |
[20] | ZHANG S, WANG M, JIANG S, et al. The activation and reduction of N2 by single/double-atom electrocatalysts: a first-principle study. ChemistrySelect, 2021, 6(8): 1787. |
[21] | WU J, YANG L, LIU X, et al. Transition metal decorated bismuthene for ammonia synthesis: a density functional theory study. Chinese Chemical Letters, 2022, 34(6): 107659. |
[22] | CHEN Z, ZHAO J X, CABRERA C R, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods, 2018, 3(6): 1800368. |
[23] |
LIU K, FU J W, ZHU L, et al. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale, 2020, 12(8): 4903.
DOI PMID |
[24] |
XU Z W, SONG R F, WANG M Y, et al. Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study. Physical Chemistry Chemical Physics, 2020, 22(45): 26223.
DOI PMID |
[25] |
SONG R F, YANG.J, WANG M Y, et al. Theoretical study on P-coordinated metal atoms embedded in arsenene for the conversion of nitrogen to ammonia. ACS Omega, 2021, 6(12): 8662.
DOI PMID |
[26] | DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508. |
[27] | DELLEY B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756. |
[28] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865.
DOI PMID |
[29] | DELLEY B. Hardness conserving semilocal pseudopotentials. Physical Review B, 2002, 66(15): 155125. |
[30] | TODOROVA T, DELLEY B. Wetting of paracetamol surfaces studied by DMol3-COSMO calculations. Molecular Simulation, 2008, 34(10): 1013. |
[31] | CUI C N, ZHANG H C, LUO Z X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism. Nano Research, 2020, 13(8): 2280. |
[32] | NØRSKOV J K, ROSSMEISL J. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886. |
[33] |
AMBARISH K, SAMIRA S, ANJLI P, et al. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews, 2018, 118(5): 2302.
DOI PMID |
[34] | LIM D H, WILCOX J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. Journal of Physical Chemistry C, 2012, 116(5): 3653. |
[35] |
ZHAO J X, CHEN Z F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. Journal of the American Chemical Society, 2017, 139(36): 12480.
DOI PMID |
[36] | JIAO Y, ZHENG Y, DAVEY K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 2016, 1: 16130. |
[37] | HAMMER B, NØRSKOV J K. Theoretical surface science and catalysis—calculations and concepts. Advances in Catalysis, 2000, 45: 71. |
[38] | LIU X, CHENG Y J, ZHENG Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single atom catalysts. Journal of the American Chemical Society, 2019, 141(24): 9664. |
[39] | WEI Z X, ZHANG Y F, WANG S Y, et al. Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6(28): 13790. |
[40] | SONG W, WANG J, FU L, et al. First-principles study on Fe2B2 as efficient catalyst for nitrogen reduction reaction. Chinese Chemical Letters, 2021, 32(10): 3137. |
[41] | AAYUSH R S, BRIAN A R, JAY A S, et al. Electrochemical ammonia synthesis—the selectivity challenge. ACS Catalysis, 2016, 7(1): 706. |
[42] | LIU C W, LI Q Y, ZHANG J, et al. Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia. Journal of Physical Chemistry C, 2018, 122(44): 25268. |
[43] | XIAO B B, YANG L, YU L B, et al. The VN3 embedded graphane with the improved selectivity for nitrogen fixation. Applied Surface Science, 2020, 513(30): 145855. |
[44] | WANG Z G, WU H H, LI Q, et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Advanced Science, 2019, 7(3): 1901382. |
[45] | LIU X, YANG L, WEI T, et al. Active MoS2-based electrode for green ammonia synthesis. Chinese Journal of Chemical Engineering, 2023, 65: 268. |
[1] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[2] | 杨博, 吕功煊, 马建泰. 镍铁氢氧化物-磷化钴复合电极电催化分解水研究[J]. 无机材料学报, 2024, 39(4): 374-382. |
[3] | 吴光宇, 舒松, 张洪伟, 李建军. 接枝内酯基活性炭增强苯乙烯吸附性能研究[J]. 无机材料学报, 2024, 39(4): 390-398. |
[4] | 孙川, 何鹏飞, 胡振峰, 王荣, 邢悦, 张志彬, 李竞龙, 万春磊, 梁秀兵. 含有石墨烯阵列的SiC基陶瓷材料的制备与力学性能[J]. 无机材料学报, 2024, 39(3): 267-273. |
[5] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[6] | 王艳莉, 钱心怡, 沈春银, 詹亮. 石墨烯基介孔锰铈氧化物催化剂: 制备和低温催化还原NO[J]. 无机材料学报, 2024, 39(1): 81-89. |
[7] | 杨平军, 李铁虎, 李昊, 党阿磊. 石墨烯对环氧树脂泡沫炭石墨化、电导率和力学性能的影响[J]. 无机材料学报, 2024, 39(1): 107-112. |
[8] | 董怡曼, 谭占鳌. 宽带隙钙钛矿基二端叠层太阳电池复合层的研究进展[J]. 无机材料学报, 2023, 38(9): 1031-1043. |
[9] | 张祥松, 刘业通, 王永瑛, 武子瑞, 刘振中, 李毅, 杨娟. 自组装制备PtIr合金气凝胶及其高效电催化氨氧化性能[J]. 无机材料学报, 2023, 38(5): 511-520. |
[10] | 陈赛赛, 庞雅莉, 王娇娜, 龚䶮, 王锐, 栾筱婉, 李昕. 绿-黄可逆电热致变色织物的制备及其性能[J]. 无机材料学报, 2022, 37(9): 954-960. |
[11] | 胡越, 安琳, 韩鑫, 侯成义, 王宏志, 李耀刚, 张青红. RhO2修饰BiVO4薄膜光阳极的制备及其光电催化分解水性能[J]. 无机材料学报, 2022, 37(8): 873-882. |
[12] | 孙炼, 顾全超, 杨雅萍, 王洪磊, 余金山, 周新贵. 二维过渡金属硫属化合物氧还原反应催化剂的研究进展[J]. 无机材料学报, 2022, 37(7): 697-709. |
[13] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[14] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[15] | 王鹏, 靳遵龙, 陈宁光, 刘勇豪. Mo掺杂α-MnO2电催化析氧反应的理论研究[J]. 无机材料学报, 2022, 37(5): 541-546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||