无机材料学报 ›› 2025, Vol. 40 ›› Issue (3): 256-270.DOI: 10.15541/jim20240424

• 综述 • 上一篇    下一篇

质子调控型电化学离子突触研究进展

范晓波1(), 祖梅1(), 杨向飞2, 宋策1, 陈晨1, 王子3, 罗文华2, 程海峰1()   

  1. 1.国防科技大学 空天科学学院, 长沙 410073
    2.中国工程物理研究院 表面物理与化学重点实验室, 绵阳 621700
    3.中南大学 粉末冶金研究院, 长沙 410083
  • 收稿日期:2024-10-07 修回日期:2024-11-03 出版日期:2025-03-20 网络出版日期:2025-03-12
  • 通讯作者: 程海峰, 研究员. E-mail: chenghf@nudt.edu.cn;
    祖 梅, 副研究员. E-mail: zumei2003@163.com
  • 作者简介:范晓波(2000-), 男, 博士研究生. E-mail: fanxiaobo18@163.com
  • 基金资助:
    国家自然科学基金(52473117);国家自然科学基金(52203022);湖南省自然科学基金(2024JJ2059);湖南省自然科学基金(2022JJ40547)

Research Progress on Proton-regulated Electrochemical Ionic Synapses

FAN Xiaobo1(), ZU Mei1(), YANG Xiangfei2, SONG Ce1, CHEN Chen1, WANG Zi3, LUO Wenhua2, CHENG Haifeng1()   

  1. 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
    2. Science and Technology on Surface Physics and Chemistry Laboratory, China Academy of Engineering Physics, Mianyang 621700, China
    3. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
  • Received:2024-10-07 Revised:2024-11-03 Published:2025-03-20 Online:2025-03-12
  • Contact: CHENG Haifeng, professor. E-mail: chenghf@nudt.edu.cn;
    ZU Mei, associate professor. E-mail: zumei2003@163.com
  • About author:FAN Xiaobo (2000-), male, PhD candidate. E-mail: fanxiaobo18@163.com
  • Supported by:
    National Natural Science Foundation of China(52473117);National Natural Science Foundation of China(52203022);Natural Science Foundation of Hunan Province(2024JJ2059);Natural Science Foundation of Hunan Province(2022JJ40547)

摘要:

作为神经网络中数量最庞大的组成部分, 新型人工突触器件的研发成为了硬件实现神经形态计算的关键挑战。基于电化学晶体管的三端突触器件能够有效利用电解质层中的离子来调节通道电导, 也被称为电化学离子突触,该器件通过离子在具有氧化还原活性的沟道材料中的电化学掺杂和恢复过程来模拟生物突触特性。在调制沟道材料电导的离子中, 采用质子(H+)作为掺杂粒子的电化学离子突触具有能耗更低、运行速度更快和循环寿命更长等优势。本文综述了近年来质子调控型电化学离子突触的研究进展, 归纳了用于质子调控型电化学离子突触沟道层和电解质层的材料体系, 分析了质子调控型电化学离子突触面临的挑战, 并展望了其未来的发展。

关键词: 神经形态器件, 人工突触, 电化学晶体管, 质子, 综述

Abstract:

Development of novel artificial synaptic devices, which make up the majority of neural networks, has emerged as a pivotal path to hardware realization of neuromorphic computing. An electrochemical ion synapse, also known as a three-terminal synaptic device based on electrochemical transistors, is a device that may efficiently use ions in the electrolyte layer to modify channel conductivity. By electrochemical doping and recovering ions in channel materials exhibiting redox activity, this device mimics biological synaptic properties. The advantages of the electrochemical ion synapse, which uses proton (H+) as the doping particle, are lower energy consumption, faster operation, and a longer cycle life among the ions that alter the channel material's conductance. This article reviews the recent research progress on proton-regulated electrochemical ion synapses, summarizes the material systems used for the channel layer and electrolyte layer of proton-regulated electrochemical ion synapses, analyzes the challenges faced by proton-regulated electrochemical ion synapses, and points out directions on their future development.

Key words: neuromorphic device, artificial synapse, electrochemical transistor, proton, review

中图分类号: