无机材料学报

• 综述 • 上一篇    下一篇

甲烷转化用抗积碳催化材料研究进展

王俊卜1,2, 黄泽皑1,2, 杨茗凯2, 蒙颖2, 周明炜2, 周莹1,2   

  1. 西南石油大学 1.油气藏地质及开发工程全国重点实验室; 2.新能源与材料学院,成都 610500
  • 收稿日期:2025-10-31 修回日期:2025-12-10
  • 通讯作者: 黄泽皑, 副教授. E-mail: zeai.Huang@swpu.edu.cn; 周 莹, 教授. E-mail: yzhou@swpu.edu.cn
  • 作者简介:王俊卜(1996-), 女, 博士研究生. E-mail: wangjb0401@163.com
  • 基金资助:
    国家杰出青年科学基金(52325401); 国家重点研发计划(2025YFE0112700); 国际合作项目(W2412080)

Research Progress on Anti-coking Catalytic Materials for Methane Conversion

WANG Junbu1,2, HUANG Ze'ai1,2, YANG Mingkai2, MENG Ying2, ZHOU Mingwei2, ZHOU Ying1,2   

  1. 1. National Key Laboratory of Oil and Gas Reservior Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; 2. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
  • Received:2025-10-31 Revised:2025-12-10
  • Contact: HUANG Ze'ai, associate professor. E-mail: zeai.Huang@swpu.edu.cn; ZHOU Ying, professor. E-mail: yzhou@swpu.edu.cn
  • About author:WANG Junbu (1996-), female, PhD candidate. E-mail: wangjb0401@163.com
  • Supported by:
    Distinguished Young Scholars of China (52325401); National Key R&D Program of China (2025YFE0112700); International Co-operation Project (W2412080)

摘要: 甲烷是天然气、页岩气、沼气及天然气水合物等资源中的主要组分,因其含氢量高、资源丰富而成为生产高附加值化学品的重要原料。然而,甲烷具有较高的化学稳定性,其催化转化面临高活化能和复杂的积碳问题,常导致催化剂失活、寿命缩短和选择性下降,成为制约其高效利用的关键瓶颈。在全球能源结构转型与化工产业升级的背景下,开发高性能甲烷催化体系具有重要意义。近年来,热催化、光热催化和光电催化等外场驱动技术为甲烷在温和条件下的转化提供了新的可能,但不同反应路径均涉及复杂的积碳形成机制。本文在总结氧化性与非氧化性气氛中甲烷催化转化过程的积碳形成机制基础上,系统阐述了催化剂在热催化材料体系、光热/光电催化材料体系及熔融催化材料体系中的作用,重点探讨了活性位点设计、金属-载体界面调控等策略对积碳生成、催化寿命和选择性的影响。最后,本文归纳了催化剂抗积碳及再生策略,并展望了未来甲烷催化转化技术的发展方向。

关键词: 甲烷转化, 抗积碳, 催化剂, 反应机理, 综述

Abstract: Methane, a primary component of natural gas, shale gas, biogas, and gas hydrates, constitutes a vast hydrogen-rich resource for production of high-value chemicals. However, its intrinsic chemical inertness poses significant challenges for catalytic conversion, primarily due to high activation barriers and severe carbon deposition (coking). These challenges result in rapid catalyst deactivation and reduced selectivity, thereby hindering industrial viability. Consequently, developing high-performance catalytic systems for methane conversion is of strategic importance against the backdrop of global chemical industry upgrading and the demand for efficient energy utilization. While emerging externally driven strategies, including thermocatalysis, photothermal catalysis, and photo-electrocatalysis, enable methane conversion under milder conditions, managing complex carbon deposition remains a persistent challenge. This review systematically categorizes the formation mechanisms of carbon species under both oxidative and non-oxidative environments. Performances of various catalytic systems are examined, ranging from solid-state thermocatalytic and photocatalytic materials to molten-phase frameworks. Special attention is devoted to active site design and metal-support interface engineering as key determinants of carbon resistance, catalytic stability, and product selectivity. Furthermore, mitigation strategies are critically evaluated. Finally, this review outlines future opportunities through the integration of structural optimization, kinetic modulation, field-assisted catalysis, and intelligent design to develop robust, selective, and long-life catalysts for methane valorization.

Key words: methane conversion, anti-coking, catalyst, reaction mechanism, review

中图分类号: