冯恒阳1, 魏天然1*, 仇鹏飞2, 史迅2*
收稿日期:2025-10-31
修回日期:2025-12-17
通讯作者:
魏天然, 教授. E-mail: tianran_wei@sjtu.edu.cn; 史迅, 研究员. E-mail: xshi@mail.sic.ac.cn
作者简介:冯恒阳(2000-), 男, 博士生. E-mail: dajingfhy@sjtu.edu.cn
基金资助:FENG Hengyang1, WEI Tian-Ran1*, QIU Pengfei2, SHI Xun2*
Received:2025-10-31
Revised:2025-12-17
Contact:
WEI Tian-Ran, professor. E-mail: tianran_wei@sjtu.edu.cn; SHI Xun, professor. E-mail: xshi@mail.sic.ac.cn
About author:FENG Hengyang (2000-), male, PhD candidate. E-mail: dajingfhy@sjtu.edu.cn
Supported by:摘要: 脆性一直是制约无机半导体材料高效加工制造及其在复杂结构场景应用的关键瓶颈。突破无机半导体的本征脆性,实现类金属的加工制造,是材料领域长期面临的重要科学难题和技术挑战。近年来,我国科研人员在国际上率先发现并报道了无机半导体中室温宏观超大塑性应变,这一重要突破重塑了人们对半导体力学性能的传统认知。优异的塑性使得此类材料兼容多种类金属加工制造方法,形成了片、箔、丝、棒等多种材料形态,从而极大拓展了无机半导体材料的应用场景。经过数年发展,塑性无机半导体已逐渐成为材料学科一个重要的新兴方向和研究热点。本文将简要回顾总结这一新方向的研究进展与发展脉络,重点评述塑性无机半导体的发现、大应变机制与原理、冷加工和温加工,以及功能性应用等方面的代表性工作,并在此基础上,对未来的研究方向与发展提出若干思考和建议。
中图分类号:
冯恒阳, 魏天然, 仇鹏飞, 史迅. 无机半导体的宏观塑性超大应变与类金属加工制造[J]. 无机材料学报, DOI: 10.15541/jim20250437.
FENG Hengyang, WEI Tian-Ran, QIU Pengfei, SHI Xun. Ultra-large Macroscopic Plastic Deformation and Metalworking in Inorganic Semiconductors[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250437.
| [1] 谢建新. 材料加工新技术与新工艺,第一版. 北京:冶金工业出版社,2004, 1-13. [2] GREEN D J.An Introduction to the Mechanical Properties of Ceramics, the first edition. Cambridge, UK: Cambridge University Press, 1998, 210-217. [3] DONG S M, WANG J Y, NI D W.Structural ceramics—the cornerstone of human civilization. Journal of Inorganic Materials, 2024, 39(6): 569. [4] JOSHUA P.Mechanical Properties of Semiconductors, the first edition. Cham, Switzerland, Springer Nature Switzerland AG, 2024, 271-272. [5] 吴汉明. 集成电路制造大生产工艺技术,第一版. 浙江:浙江大学出版社,2023, 63-198. [6] SHI X, CHEN H Y, HAO F,et al. Room-temperature ductile inorganic semiconductor. Nature Materials, 2018, 17(5): 421. [7] LIANG J S, WANG T, QIU P F,et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy & Environmental Science, 2019, 12(10): 2983. [8] HE S Y, LI Y B, LIU L,,et al. Semiconductor glass with superior flexibility. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Science Advances, 2020, 6(15): eaaz8423. [9] GAO Z Q, YANG Q Y, QIU P F,et al. p-Type Plastic Inorganic Thermoelectric Materials. Advanced Energy Materials, 2021, 11(23): 2100883. [10] YANG S Q, GAO Z Q, QIU P F,et al. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Advanced Materials, 2021, 33(10): 2007681. [11] WEI T R, QIU P F, ZHAO K P,et al. Ag2Q-based (Q=S, Se, Te) silver chalcogenide thermoelectric materials. Advanced Materials, 2023, 35(1): 2110236. [12] CHEN H Y, SHAO C L, HUANG S J,et al. High-entropy cubic pseudo-ternary Ag2(S, Se, Te) materials with excellent ductility and thermoelectric performance. Advanced Energy Materials, 2024, 14(10): 2303473. [13] WEI TR, JIN M, WANG Y C,et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science, 2020, 369(6503): 542. [14] HAN X D.Ductile van der Waals materials.Science, 2020, 369(6503): 509. [15] GAO Z Q, WEI TR, DENG T T,et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nature Communications, 2022, 13: 7491. [16] DENG T T, GAO Z Q, LI Z,et al. Room-temperature exceptional plasticity in defective Bi2Te3-based bulk thermoelectric crystals. Science, 2024, 386(6726): 1112. [17] ZHAO P, XUE W H, ZHANG Y,et al. Plasticity in single-crystalline Mg3Bi2 thermoelectric material. Nature, 2024, 631(8022): 777. [18] LI A R, WANG Y C, LI Y Z,et al. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nature Communications, 2024, 15: 5108. [19] “中国学科及前沿领域发展战略研究(2021-2035)”项目组. 中国材料科学2035发展战略,第一版. 北京:科学出版社,2023, 494-495. [20] OSHIMA Y, NAKAMURA A and MATSUNAGA K. Extraordinary plasticity of an inorganic semiconductor in darkness.Science, 2018, 360(6390): 772. [21] LIANG J S, QIU P F, ZHU Y,et al. Chen. Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1‐xSxSystem. Research, 2020, 2020: 6591981. [22] LIANG X and CHEN C. Ductile inorganic amorphous/crystalline composite Ag4TeS with phonon-glass electron-crystal transport behavior and excellent stability of high thermoelectric performance on plastic deformation.Acta Materialia, 2021, 218: 117231. [23] PENG L M, YANG S Q, WEI T R,et al. Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. Journal of Materiomics, 2022, 8(3): 656. [24] YANG Q Y, YANG S Q, QIU P F,et al. Flexible thermoelectrics based on ductile semiconductors. Science, 2022, 377(6608): 854. [25] LIANG J S, LIU J, QIU P F,et al. Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials. Nature Communications, 2023, 14: 8442. [26] WU H, SHI X L, MAO Y Q,et al. Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5 via dual-phase engineering. Advanced Energy Materials, 2023, 13(43): 2302551. [27] LI N H, SHI X L, LIU S Q,et al. Strategic vacancy engineering advances record-high ductile AgCu(Te, Se, S) thermoelectrics. Nature Communications, 2025, 16: 2812. [28] HU H P, WANG Y C, FU C G,et al. Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility. The Innovation, 2022, 3(6):100341. [29] DENG T T, GAO Z Q, QIU P F,et al. Plastic/ductile bulk 2D van der Waals single-crystalline SnSe2 for flexible thermoelectrics. Advanced Science, 2022, 9(29): 2203436. [30] LUO J, CHEN J, GAO Z Q,,et al. Ductile Inorganic Ferromagnetic Semiconductor. Advanced Materials. Ductile Inorganic Ferromagnetic Semiconductor. Advanced Materials, 2025. https://doi: 10.1002/adma.202514083. [31] HUANG H R, CHEN H Y, GAO Z Q,et al. Room-temperature wide-gap inorganic materials with excellent plasticity. Advanced Functional Materials, 2023, 33(43): 2306042. [32] ALEKPEROVA S M, AKHMEDOV I A, GADZHIEVA G S,et al. Giant magnetoresistance and kinetic phenomena in n-Ag4SSe in the vicinity of a phase transition. Physics of the Solid State, 2007, 49(3): 512. [33] REN S H, CHEN H Y, FU H L,,et al. The structural origin of extraordinary plasticity in polycrystalline semiconductors with low symmetry. Science Advances. The structural origin of extraordinary plasticity in polycrystalline semiconductors with low symmetry. Science Advances, 2025, 11(27): eadu9205. [34] MA Y P, HUANG H R, LIU Y F,et al. Remarkable plasticity and softness of polymorphic InSe van der Waals crystals. Journal of Materiomics, 2023, 9(4): 709. [35] Springer materials. (update2025)[ 2025-10-30]. https://materials.springer.com/periodictable#. [36] 陈立东,刘睿恒,史迅. 热电材料与器件,第一版. 北京:科学出版社,2018, 66-70. [37] CASTO L D, CLUNE A J, YOKOSUK M O,et al. Strong spin-lattice coupling in CrSiTe3. APL Materials, 2015, 3(4):041515. [38] IMAI Y, WATANABE A.Electronic structures of Mg3Pn2 (Pn= N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method.Journal of Materials Science, 2006, 41(8): 2435. [39] MEYERS M, CHAWLA K.Mechanical Behavior of Materials, the first edition. Cambridge, UK: Cambridge university press, 2008, 404-420. [40] MA H Q, HUANG H G, LU Z T,et al. Origin of shear induced ‘catching bonds’ on half Heusler thermoelectric compounds XFeSb (X = Nb, Ta) and SnNiY (Y = Ti, Zr, Hf). npj Computational Materials, 2024, 10: 61. [41] ZHANG J, LIU G H, CUI W,et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces. Science, 2022, 378(6618): 371. [42] WANG Y C, LI A R, HONG Y R,et al. Iterative sublattice amorphization facilitates exceptional processability in inorganic semiconductors. Nature Materials, 2025, 24: 1545. [43] HU M Y, YANG J M, WANG Y,et al. Helical dislocation-driven plasticity and flexible high-performance thermoelectric generator in α-Mg3Bi2 single crystals. Nature Communications, 2025, 16: 128. [44] SUN Y D, MA Y P, ZHANG J Y,,et al. Van der Waals semiconductor InSe plastifies by martensitic transformation. Science Advances. Van der Waals semiconductor InSe plastifies by martensitic transformation. Science Advances, 2024, 10(42): eado9593. [45] WONG L W, YANG K, HAN W,et al. Deciphering the ultra-high plasticity in metal monochalcogenides. Nature Materials, 2024, 23(2): 196. [46] GE B Z, LI C, LU W Q,et al. Dynamic phase transition leading to extraordinary plastic deformability of thermoelectric snse2 single crystal. Advanced Energy Materials, 2023, 13(27): 2300965. [47] RICE J R, THOMSON R.Ductileversus brittle behaviour of crystals. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1974, 29(1): 73. [48] WU Y J, ZHANG Y, WANG X Y,et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature, 2024, 626(8000): 779. [49] CANTOS-PRIETO F, FALIN A, ALLIATI M,et al. Layer-dependent mechanical properties and enhanced plasticity in the Van der Waals chromium trihalide magnets. Nano Letters, 2021, 21(8): 3379. [50] REN Q, LUN Y Z, LI Y H, et al. High-throughput screening of deformable inorganic layered semiconductors. The Journal of Physical Chemistry C, 2023, 127(16): 7870. [51] TAN J L, ZHANG H Y, WANG X Z,et al. Deformable monoclinic gallium telluride with high in-plane structural anisotropy. Materials Today, 2024, 80: 250. [52] GAO Z Q, YANG S Q, MA Y P,et al. Warm metalworking for plastic manufacturing in brittle semiconductors. Nature Materials, 2025, 24: 1538. [53] NAKAMURA A, LI Y.Plastic processing of bulk semiconductors.Nature Materials, 2025, 24(10): 1505. [54] LIANG J, ZHANG X F, WAN C L.From brittle to ductile: a scalable and tailorable all-inorganic semiconductor foil through a rolling process toward flexible thermoelectric modules.ACS Applied Materials & Interfaces, 2022, 14(46): 52017. [55] ZHU Y, LIANG J S, MATHAYAN V,et al. High performance full-inorganic flexible memristor with combined resistance-switching. ACS Applied Materials & Interfaces, 2022, 14(18): 21173. [56] ZHAO X F, YANG S Q, WEN X H,et al. A fully flexible intelligent thermal touch panel based on intrinsically plastic Ag2S semiconductor. Advanced Materials, 2022, 34(13): 2107479. [57] WANG X D, TAN J L, OUYANG J,et al. Designing inorganic semiconductors with cold-rolling processability. Advanced Science, 2022, 9(30): 2203776. [58] WANG Q, WAN C L, WU Y,et al. Plastic inorganic van der waals semiconductors for flexible X-ray detectors. ACS Applied Electronic Materials, 2025, 7(5): 1764. [59] FU L, MA Y P, PAN Z Y,et al. Warm metalworking for brittle liquid-nitrogen-temperature thermoelectric materials. Advanced Energy Materials, 2025, 15(42): e03241. [60] DING W J, SHEN X Y, JIN M,et al. Robust bendable thermoelectric generators enabled by elasticity strengthening. Nature Communications, 2024, 15: 9767. [61] FU Y Q, KANG S L, GU H,et al. Superflexible Inorganic Ag2Te0.6S0.4 Fiber with High Thermoelectric Performance. Advanced Science, 2023, 10(13): 2207642. [62] XIN L T, HE H Y, WANG X H,et al. Single-crystalline indium selenide fibers by laser-induced recrystallization and their tunable whispering-gallery-mode lasing by pressure-modulating. Journal of the American Ceramic Society, 2024, 107(9): 5801. [63] LI X C, MENG Y, LI W P,et al. Multislip-enabled morphing of all-inorganic perovskites. Nature Materials, 2023, 22(10): 1175. [64] DONG L R, ZHANG J, LI Y Z, et al. Borrowed dislocations for ductility in ceramics.Science, 2024, 385(6707): 422. |
| [1] | 胡宇晨, 徐子硕, 胡悦娟, 陈立东, 姚琴. 单壁碳纳米管复合增强二维平面聚酞菁铜的热电性能[J]. 无机材料学报, 2026, 41(1): 63-69. |
| [2] | 葛烨明, 汤哲, 刘苗, 娄四泽, 刘振国, 周岩, 万舜, 宗鹏安. Ce0.9Fe3CoSb12薄膜的磁控溅射制备及其热电与传感性能研究[J]. 无机材料学报, 2026, 41(1): 55-62. |
| [3] | 缪鹏程, 王丽君, 沈紫怡, 黄莉, 袁宁一, 丁建宁. 微球状Ag2Se的溶剂热合成及其热电性能研究[J]. 无机材料学报, 2025, 40(12): 1373-1378. |
| [4] | 郑元顺, 余健, 叶先峰, 梁栋, 朱婉婷, 聂晓蕾, 魏平, 赵文俞, 张清杰. V取代Al位提升全赫斯勒合金Fe2VAl的热电性能[J]. 无机材料学报, 2025, 40(12): 1425-1432. |
| [5] | 邹敏敏, 刘敬欣, 胡浩琳, 曾冬梅, 张婷, 张优. 电催化析氢二维Mo2CTx MXene材料研究进展: 从制备到应用[J]. 无机材料学报, 2025, 40(11): 1173-1187. |
| [6] | 闫共芹, 王晨, 蓝春波, 洪雨昕, 叶维超, 付向辉. Al掺杂P2型Na0.8Ni0.33Mn0.67-xAlxO2钠离子电池正极材料的制备与电化学性能[J]. 无机材料学报, 2025, 40(9): 1005-1012. |
| [7] | 陈相杰, 李玲, 雷添福, 王佳佳, 汪尧进. 相界工程和畴工程调控(1-x)(0.8PZT-0.2PZN)-xBZT陶瓷的压电性能[J]. 无机材料学报, 2025, 40(6): 729-734. |
| [8] | 苏浩健, 周敏, 李来风. 多元素掺杂优化SnTe的热电性能[J]. 无机材料学报, 2024, 39(10): 1159-1166. |
| [9] | 张志民, 葛敏, 林翰, 施剑林. 新型磁电催化纳米粒子的活性氮释放与抗菌性能研究[J]. 无机材料学报, 2024, 39(10): 1114-1124. |
| [10] | 赵雅文, 屈发进, 汪岩屹, 王智文, 陈初升. 基于硅酸铝纤维的柔性氧敏感元件的制备和性能[J]. 无机材料学报, 2024, 39(10): 1084-1090. |
| [11] | 沈浩, 陈倩倩, 周渤翔, 唐晓东, 张媛媛. A位La/Sr共掺杂PbZrO3薄膜的制备及储能特性优化[J]. 无机材料学报, 2024, 39(9): 1022-1028. |
| [12] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
| [13] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
| [14] | 郑斌, 康凯, 张青, 叶昉, 解静, 贾研, 孙国栋, 成来飞. 前驱体转化陶瓷法制备Ti3SiC2陶瓷及其热稳定性研究[J]. 无机材料学报, 2024, 39(6): 733-740. |
| [15] | 陈浩, 樊文浩, 安德成, 陈少平. 能带优化和载流子调控改善SnTe的热电性能[J]. 无机材料学报, 2024, 39(3): 306-312. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||