• •
邹敏敏, 刘敬欣, 胡浩琳, 曾冬梅, 张婷, 张优
收稿日期:
2025-01-15
修回日期:
2025-04-19
作者简介:
邹敏敏(1985-), 女, 讲师. E-mail: zouminmin@bipt.edu.cn
基金资助:
ZOU Minmin, LIU Jingxin, HU Haolin, ZENG Dongmei, ZHANG Ting1, ZHANG You
Received:
2025-01-15
Revised:
2025-04-19
About author:
ZOU Minmin (1985-), female, lecturer. E-mail: zouminmin@bipt.edu.cn
Supported by:
摘要: MXenes作为一种新兴的二维(2D)层状材料,具有电子导电率高、比表面积大、亲水性良好以及表面基团可控等优点,在能源、催化、防腐蚀和电磁屏蔽等领域展现出广阔的应用前景。其中,Mo2CTx MXene因优异的电催化析氢活性而备受关注。本文旨在系统梳理Mo2CTx MXene的制备及其在电催化析氢领域的研究现状,为该体系进一步深入研究提供全面且清晰的参考框架。文中全面综述了近年来Mo2CTx MXene的制备方法及分层技术;归纳了Mo2CTx MXene作为析氢反应(HER)电催化剂的研究进展;从末端修饰、元素掺杂以及杂化复合等角度深入探讨了Mo2CTx MXene HER催化性能的优化策略;最后对Mo2CTx MXene及其复合材料在电催化析氢领域的发展进行了展望。尽管Mo2CTx MXene的研究成果颇丰,但其制备工艺的绿色化与规模化不足,导致生产成本居高不下。此外,催化机理研究的滞后,制约了理性设计策略的开发。未来需着力开发绿色无氟制备工艺,促进材料规模化生产,持续提升催化活性并增强催化剂稳定性,加快催化机理的探究,以推动Mo2CTx及其复合材料在电催化析氢领域的应用进程。
中图分类号:
邹敏敏, 刘敬欣, 胡浩琳, 曾冬梅, 张婷, 张优. 电催化析氢二维Mo2CTx MXene材料研究进展:从制备到应用[J]. 无机材料学报, DOI: 10.15541/jim20250023.
ZOU Minmin, LIU Jingxin, HU Haolin, ZENG Dongmei, ZHANG Ting, ZHANG You. Electrocatalytic Hydrogen Evolution Performance of Two-dimensional Mo2CTx MXene Materials: a Review on Preparation and Application[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250023.
[1] HUANG Q.MXene: coming up roses.Journal of Inorganic Materials, 2024, 39(2): 113. [2] LI N, KONG Z, CHEN X Z, et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis. Journal of Inorganic Materials, 2020, 35(7): 735. [3] GOGOTSI Y, ANASORI B.The rise of MXenes.ACS Nano, 2019, 13(8): 8491. [4] LI L, CHENG Q.Recent advances in the high performance MXenes nanocomposites.Journal of Inorganic Materials, 2024, 39(2): 153. [5] IBRAGIMOVA R, ERHART P, RINKE P, et al. Surface functionalization of 2D MXenes: trends in distribution, composition, and electronic properties. Journal of Physical Chemistry Letters, 2021, 12(9): 2377. [6] MOZAFARI M, SOROUSH M.Surface functionalization of MXenes.Materials Advances, 2021, 2(22): 7277. [7] LI M, HUANG Q.Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes.Journal of Inorganic Materials, 2020, 35(1): 1. [8] PERSSON I, EL GHAZALY A, TAO Q, et al. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small, 2018, 14(17): e1703676. [9] WANG X, DING J, SONG W, et al. Cation vacancy clusters in Ti3C2Tx MXene induce ultra-strong interaction with noble metal clusters for efficient electrocatalytic hydrogen evolution. Advanced Energy Materials, 2023, 13(23): 2300148. [10] ZHAO X, LI W P, CAO Y, et al. Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS Nano, 2024, 18(5): 4256. [11] LI Y, LAN B, GUAN B, et al. Molten salt derived Mo2CTx MXene with excellent catalytic performance for hydrogen evolution reaction. Acta Physico Chimica Sinica, 2024, 40(9): 2306031. [12] KUMAR J A, PRAKASH P, KRITHIGA T, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere, 2022, 286: 131607. [13] LEI J C, ZHANG X, ZHOU Z.Recent advances in MXene: preparation, properties, and applications.Frontiers of Physics, 2015, 10(3): 276. [14] SEH Z W, FREDRICKSON K D, ANASORI B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 2016, 1(3): 589. [15] SEH Z W, KIBSGAARD J, DICKENS C F,#magtechI#et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science, 2017, 355(6321): eaad4998. [16] LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 2016, 28: 9026. [17] PANDEY M T, SOMMER K.Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study.Journal of Physical Chemistry C, 2017, 121: 13593. [18] JIN D, JOHNSON L R, RAMAN A S, et al. Computational screening of 2D ordered double transition-metal carbides (MXenes) as electrocatalysts for hydrogen evolution reaction. Journal of Physical Chemistry C, 2020, 124: 10584. [19] LI H, CHEN Y, TANG Q.Surface termination (-O, -F or -OH) and metal doping on the HER activity of Mo2CTx MXene. ChemPhysChem, 2024, 25(18): e202400255. [20] HANDOKO A D, FREDRICKSON K D, ANASORI B, et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Applied Energy Materials, 2017, 1(1): 173. [21] QU G, ZHOU Y, WU T, et al. Phosphorized MXene-phase molybdenum carbide as an earth-abundant hydrogen evolution electrocatalyst. ACS Applied Energy Materials, 2018, 1(12): 7206. [22] PAN H.Ultra-high electrochemical catalytic activity of MXenes.Scientific Reports, 2016, 6(1): 32531. [23] REN J, ZONG H, SUN Y, et al. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm, 2020, 22(8): 1395. [24] TAN Y, YI M, ZHU Z, et al. Carbon-coated MoSe2/Mo2CTx(MXene) heterostructure for efficient hydrogen evolution. Materials Science and Engineering: B, 2021, 271: 115239. [25] HUANG S, MOCHALIN V N.Combination of high pH and an antioxidant improves chemical stability of two-dimensional transition-metal carbides and carbonitrides (MXenes) in aqueous colloidal solutions.Inorganic Chemistry, 2022, 61(26): 9877. [26] ZHAO X, VASHISTH A, BLIVIN J, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 2020, 7(20): 2000845. [27] DOO S, CHAE A, KIM D, et al. Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Applied Materials & Interfaces, 2021, 13(19): 22855. [28] WAN P, TANG Q.Theoretical progress of MXenes as electrocatalysts for the hydrogen evolution reaction.Materials Chemistry Frontiers, 2024, 8(2): 507. [29] WANG K, ZHOU Y, XU W, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceramics International, 2016, 42(7): 8419. [30] DALL'AGNESE C, DALL'AGNESE Y, ANASORI B, et al. Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42(20): 16446. [31] GUO Y, JIN S, WANG L, et al. Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. Ceramics International, 2020, 46: 19550. [32] PEERA S G, KOUTAVARAPU R, CHAO L, et al. 2D MXene nanomaterials as electrocatalysts for hydrogen evolution reaction (HER): a review. Micromachines, 2022, 13(9): 1499. [33] HANAN A, AWAN H T A, BIBI F, et al. MXenes and heterostructures-based electrocatalysts for hydrogen evolution reaction: recent developments and future outlook. Journal of Energy Chemistry, 2024, 92: 176. [34] MESHKIAN R, NäSLUND L Å, HALIM J, et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Materialia, 2015, 108: 147. [35] HALIM J, KOTA S, LUKATSKAYA M, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 2016, 26(18): 3118. [36] MEI J, AYOKO G A, HU C, et al. Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustainable Materials and Technologies, 2020, 25: e00156. [37] THOMAS T, PUSHPAN S, AGUILAR MARTíNEZ J A, et al. UV-assisted safe etching route for the synthesis of Mo2CTx MXene from Mo-In-C non-MAX phase. Ceramics International, 2021, 47(24): 35384. [38] UNNIKRISHNAN B, WU C W, SANGILI A, et al. Synthesis and in situ sulfidation of molybdenum carbide MXene using fluorine-free etchant for electrocatalytic hydrogen evolution reactions. Journal of Colloid and Interface Science, 2022, 628: 849. [39] JIN S, WU J, JIANG J, et al. Boosting photocatalytic performance of CdxZn1-xS for H2 production by Mo2C MXene with large interlayer distance. Journal of Materials Chemistry A, 2023, 11(11): 5851. [40] WU J, SU J, TAO W, et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Advanced Materials, 2023, 35(25): e2209954. [41] WANG F, JIN S, DU Y, et al. Preparation of Mo2CTx MXene as co-catalyst for H2 production by etching of pure/mixed HBr solution. Diamond and Related Materials, 2023, 136: 109922. [42] DEEVA E B, KURLOV A, ABDALA P M, et al. In situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx: implications for the catalytic activity in the water-gas shift reaction. Chemistry of Materials, 2019, 31(12): 4505. [43] LV L P, GUO C, SUN W, et al. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small, 2018, 15(3): 1804338. [44] GUO Y, ZHANG X, JIN S, et al. Synthesis of Mo2C MXene with high electrochemical performance by alkali hydrothermal etching. Journal of Advanced Ceramics, 2023, 12(10): 1889. [45] LI G, TAN L, ZHANG Y, et al. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir, 2017, 33(36): 9000. [46] XIE X, XUE Y, LI L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 2014, 6(19): 11035. [47] LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019, 141(11): 4730. [48] WANG Y, ZHOU B, TANG Q, et al. Ultrafast synthesis of MXenes in minutes via low-temperature molten salt etching. Advanced Materials, 2024, 36(49): 2410736. [49] ALI M A, KHATUN M R, JAHAN N, et al. Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: first-principles calculations. Chinese Physics B, 2017, 26(3): 033102. [50] GENG D, ZHAO X, CHEN Z, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Advanced Materials, 2017, 29(35): 1700072. [51] ÖPER M, YORULMAZ U, SEVIK C, et al. Controlled CVD growth of ultrathin Mo2C (MXene) flakes. Journal of Applied Physics, 2022, 131(2): 5304. [52] RAVURI S, WROBEL P S, GORANTLA S, et al. High yield and wide lateral size growth of α-Mo2C: exploring the boundaries of CVD growth of bare MXene analogues. Nanotechnology, 2024, 35(15): 155601. [53] XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14(11): 1135. [54] SUN W, WANG X, FENG J, et al. Controlled synthesis of 2D Mo2C/graphene heterostructure on liquid Au substrates as enhanced electrocatalytic electrodes. Nanotechnology, 2019, 30(38): 385601. [55] JEON J, PARK Y, CHOI S, et al. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide. ACS Nano, 2018, 12(1): 338. [56] ZHANG F, ZHANG Z, WANG H, et al. Plasma-enhanced pulsed-laser deposition of single-crystalline Mo2C ultrathin superconducting films. Physical Review Materials, 2017, 1(3): 034002. [57] HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation. Nature Communications, 2019, 10(1): 522. [58] FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Advanced Functional Materials, 2019, 29: 1901942. [59] CHOI J, CHACON B, PARK H, et al. N-p-conductor transition of gas sensing behaviors in Mo2CTx MXene. ACS Sensors, 2022, 7(8): 2225. [60] LI J, ZHANG W, GE X, et al. Etching-courtesy NH4+ pre-intercalation enables highly-efficient Li+ storage of MXenes via the renaissance of interlayer redox. Journal of Energy Chemistry, 2022, 72: 26. [61] JIANG W, GAO Z, SHEN M, et al. Molten salt N-modified Mo2CTx as a non-precious metal catalyst for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 57: 1. [62] WU Y, WANG L, BO T, et al. Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo2CTx MXene. Advanced Functional Materials, 2023, 33(16): 2214375. [63] LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media. Nanoscale, 2019, 11(22): 10992. [64] LIM K R G, HANDOKO A D, JOHNSON L R, et al. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano, 2020, 14(11): 16140. [65] BENCHAKAR M, NATU V, ELMELEGY T A, et al. On a two-dimensional MoS2/Mo2CTx hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CTx MXene. Journal of The Electrochemical Society, 2020, 167(12): 124507. [66] WU Y, WANG L, CHAI Z, et al. Heterostructure engineering of MoS2/Mo2CTx nanoarray via molten salt synthesis for enhanced hydrogen evolution reaction. Journal of Materiomics, 2023, 9(6): 1122. [67] YI M, LI N, LU B, et al. Single-atom Pt decorated in heteroatom (N, B, and F)-doped ReS2 grown on Mo2CTx for efficient pH-universal hydrogen evolution reaction and flexible Zn-air batteries. Energy Storage Materials, 2021, 42: 418. [68] YI M, HU S, LI N, et al. Selenium vacancy-rich and heteroatom-doped CoSe/Mo2CTx MXene prepared using ionic liquid dopants for pH-universal hydrogen evolution and flexible supercapacitors. Journal of Energy Chemistry, 2022, 72: 453. [69] YI M, ZHANG X, CHEN Y, et al. Ionic liquid dopant induced abundant Ni-vacancies in N, B, F tri-doped NiSe2/Mo2CTx stabilizing of single-atom Ru for efficient hydrogen evolution reactions and flexible Zn-air batteries. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3687. [70] WU N, LIU J, ZHAO W, et al. Molybdenum carbide MXene embedded with nickel sulfide clusters as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48(46): 17526. [71] LIU S, LIN Z, WAN R, et al. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. Journal of Materials Chemistry A, 2021, 9(37): 21259. [72] YI M, REN Y, ZHANG X, et al. Ionic liquid-assisted synthesis of N, F, and B co-doped BiOBr/Bi2Se3 on Mo2CTx for enhanced performance in hydrogen evolution reaction and supercapacitors. Journal of Colloid and Interface Science, 2024, 658: 334. [73] ABDOLAHI B, GHOLIVAND M B, SHAMSIPUR M, et al. Introduction of a three-dimensional flower-like Mo2CTx/poly (2, 2′-dithiodianiline) on reduced graphene oxide as an efficient electrode for supercapacitor and hydrogen evolution reaction. Journal of Energy Storage, 2023, 62: 106906. [74] DING B, ONG W J, JIANG J, et al. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Applied Surface Science, 2020, 500: 143987. [75] KUZNETSOV D A, CHEN Z, KUMAR P V, et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. Journal of the American Chemical Society, 2019, 141(44): 17809. [76] ZHAO C, QIU C, DENG S, et al. 2D-3D transformation of palladium and gold nanoparticles on functionalized Mo2C by multiscale simulation. Applied Surface Science, 2019, 481: 554. |
[1] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[2] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[3] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[4] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[5] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[6] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[7] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[8] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[9] | 刘会来, 李志豪, 孔德峰, 陈星. 酞菁铁/MXene复合阴极的制备及电芬顿降解磺胺间二甲氧嘧啶[J]. 无机材料学报, 2025, 40(1): 61-69. |
[10] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[11] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[12] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[13] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[14] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[15] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||