[1] YANG G S, SANG L A, ZHANG C, et al.The role of spin in thermoelectricity. Nature Reviews Physics, 2023, 5(8): 466. [2] KIM H S, LIU W S, REN Z F.The bridge between the materials and devices of thermoelectric power generators. Energy & Environmental Science, 2017, 10(1): 69. [3] PEI Y, SHI X, LALONDE A, et al.Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66. [4] HEREMANS J P, JOVOVIC V, TOBERER E S, et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554. [5] LABORATORY M, LIMITED D I, MIYUKIGAOKA. Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. Japanese Journal of Applied Physics, 1997, 36(1): 170. [6] ZHAO L D, LO S H, ZHANG Y, et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373. [7] LAN Y C, MINNICH A J, CHEN G, et al.Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, 20(3): 357. [8] G D MAHAN, SOFO J O. The best thermoelectric. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 7436. [9] TAVARES S S, YANG K S, MEYERS M A.Heusler alloys: Past, properties, new alloys, and prospects. Progress in Materials Science, 2023, 137: 101017. [10] GRAF T, FELSER C, PARKIN S S P. Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry, 2011, 39(1): 1-50. [11] VAN DER REST C, DUPONT V, ERAUW J P, et al. On the reactive sintering of Heusler Fe2VAl-based thermoelectric compounds. Intermetallics, 2020, 125: 106890. [12] HARI S R, SRINIVAS V, LI C R, et al.Thermoelectric properties of rare-earth doped Fe2VAl Heusler alloys. Journal of Physics-Condensed Matter, 2020, 32(35): 355706. [13] KAWAHARADA Y, KUROSAKI K.Thermophysical properties of Fe2VAl. Journal of Alloys and Compounds, 2003, 352(1/2): 48. [14] SHAMIM S K, DEVI P, SINGH S, et al.Thermoelectric properties of Fe2VAl in the temperature range 300-800 K: A combined experimental and theoretical study. Physica B-Condensed Matter, 2024, 673: 415496. [15] HINTERLEITNER B, KNAPP I, PONEDER M, et al.Thermoelectric performance of a metastable thin-film Heusler alloy. Nature, 2019, 576(7785): 85. [16] GARMROUDI F, PARZER M, RISS A, et al.Solubility limit and annealing effects on the microstructure & thermoelectric properties of Fe2V1-xTaxAl1-ySiy Heusler compounds. Acta Materialia, 2021, 212: 116867. [17] FUKUTA K, TSUCHIYA K, MIYAZAKI H, et al.Improving thermoelectric performance of Fe2VAl-based Heusler compounds via high-pressure torsion. Applied Physics A: Materials Science & Processing, 2022, 128(3): 184. [18] ALLENO E.Review of the thermoelectric properties in nanostructured Fe2VAl. Metals, 2018, 8(11): 864. [19] ALLENO E, DIACK-RASSELIO A, NOUTACK M S T. Optimization of the thermoelectric properties in self-substituted Fe2VAl. Physical Review Materials, 2023, 7(7): 075403. [20] MIYAZAKI H, TANAKA S, IDE N, et al.Thermoelectric properties of Heusler-type off-stoichiometric Fe2V1+xAl1-x alloys. Materials Research Express, 2014, 1(1): 015901. [21] DIACK-RASSELIO A, ROULEAU O, COULOMB L, et al.Influence of self-substitution on the thermoelectric Fe2VAl Heusler alloy. Journal of Alloys and Compounds, 2022, 920: 166037. [22] GARMROUDI F, PARZER M, RISS A, et al.Anderson transition in stoichiometric Fe2VAl: high thermoelectric performance from impurity bands. Nature Communications, 2022, 13(1): 3599. [23] CUI X, FENG Z, JIN Y.AutoFP: a GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf. Journal of Applied Crystallography, 2015, 48(5): 1581. [24] PERDEW J P, RUZSINSZKY A, CSONKA G I, et al.Exchange and correlation in open systems of fluctuating electron number. Physical Review A, 2007, 76(4): 040501. [25] SHAM L J, KOHN W.One-particle properties of an inhomogeneous interacting electron gas. Physical Review B, 1966, 145(2): 561. [26] MAIER S, DENIS S, ADAM S, et al.Order-disorder transitions in the Fe2VAl Heusler alloy. Acta Materialia, 2016, 121: 126. [27] HINTERLEITNER B, GARMROUDI F, REUMANN N, et al.The electronic pseudo band gap states and electronic transport of the full-Heusler compound Fe2VAl. Journal of Materials Chemistry C, 2021, 9(6): 2073. [28] OKAMURA H, KAWAHARA J, NANBA T, et al.Pseudogap formation in the intermetallic compounds (Fe1-xVx)3Al. Physical Review Letters, 2000, 84(16): 3674. [29] NISHINO Y, KATO M, ASANO S, et al.Semiconductor-like behavior of electrical resistivity in Heusler-type Fe2VAl compound. Physical Review Letters, 1997, 79(10): 1909-1912. [30] KNAPP I, BUDINSKA B, MILOSAVLJEVIC D, et al.Impurity band effects on transport and thermoelectric properties of Fe2-xNixVAl. Physical Review B, 2017, 96(4): 045204. [31] GARMROUDI F, RUSS A, PARZER M, et al.Boosting the thermoelectric performance of Fe2VAl-type Heusler compounds by band engineering. Physical Review B, 2021, 103(8): 085202. [32] SHIN W H, ROH J W, RYU B, et al.Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 Incorporation. ACS Applied Materials & Interfaces, 2018, 10(4): 3689. [33] KIM H S, GIBBS Z M, TANG Y L.Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3(4): 041506. [34] YE X F, YU J, KE S Q, et al.Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy. npj Quantum Materials, 2024, 9(1): 60. |