[1] XU Y, YAN J, ZHOU W, et al.Development of high performance thermoelectric polymers via doping or dedoping engineering. Chemistry - An Asian Journal, 2024, 19(15): e202400329. [2] ABBASI M S, SULTANA R, AHMED I, et al.Contemporary advances in organic thermoelectric materials: fundamentals, properties, optimization strategies, and applications. Renewable and Sustainable Energy Reviews, 2024, 200: 114579. [3] XIAO R, ZHOU X, ZHANG C, et al.Organic thermoelectric materials for wearable electronic devices. Sensors, 2024, 24(14): 4600. [4] 梁子材, 谢美丽, 张菊华, 等. 功能聚酞菁化合物的进展. 化工新型材料, 1986, 10: 5. [5] YANG C, JIANG K, ZHENG Q, et al.Chemically stable polyarylether-based metallophthalocyanine frameworks with high carrier mobilities for capacitive energy storage. Journal of the American Chemical Society, 2021, 143(42): 17701. [6] GOMEZ-ROMERO P, LEE Y S, KERTESZ M.Band structure calculation of extended poly(copper phthalocyanine) one-dimensional and two-dimensional polymers. Inorganic Chemistry, 1988, 27(20): 3672. [7] ALIABAD H A R, BASHI M. Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18720. [8] VENKATACHALAM S, KRISHNAMURTHY V N.Polymeric pthalocyanines and other electrically conducting polymers for electronic and photonic applications: a review. Indian Journal of Chemistry, 1994, 33A(06): 506. [9] ZHANG Y, ZHANG X, JIAO L, et al.Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis. Journal of the American Chemical Society, 2023, 145(44): 24230. [10] LI J, HUCKLEBY A B, ZHANG M.Polymer-based thermoelectric materials: a review of power factor improving strategies. Journal of Materiomics, 2022, 8(1): 204. [11] NANDIHALLI N, LIU C J, MORI T.Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics. Nano Energy, 2020, 78: 105186. [12] YANG J, ZHANG H, HU N, et al.Recent advances in carbon nanotubes-based organic thermoelectric composites-a mini review. Materials Today Nano, 2025, 29: 100590. [13] JI D, LI B, RAJ B T, et al.In situ surface polymerization of PANI/SWCNT bilayer film: effective composite for improving seebeck coefficient and power factor. Advanced Materials Interfaces, 2025, 12(1): 2400566. [14] WEI S, ZHANG Y, LV H, et al.SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application. Chemical Engineering Journal, 2022, 428: 131137. [15] WANG M, YAO Q, QU S, et al.Preparation and thermoelectric properties of semiconducting single-walled carbon nanotubes/regioregular poly(3-dodecylthiophene) composite films. Polymers, 2020, 12(11): 2720. [16] CHEN Y, QU S, SHI W, et al.Enhanced thermoelectric properties of copper phthalocyanine/single-walled carbon nanotubes hybrids. Carbon, 2020, 159: 471. [17] MCKEOWN N B.Phthalocyanine-containing polymers. Journal of Materials Chemistry, 2000, 10(9): 1979. [18] FARAHMAND S, GHIACI M, RAZAVIZADEH J S.Copper phthalocyanine as an efficient and reusable heterogeneous catalyst for direct hydroxylation of benzene to phenol under mild conditions. Inorganica Chimica Acta, 2019, 484: 174. [19] GUO X, LIU J, CAO L, et al.Nonvolatile memory device based on copper polyphthalocyanine thin films. ACS Omega, 2019, 4(6): 10419. [20] LOZZI L, SANTUCCI S, BUSSOLOTTI F, et al.Investigation on copper phthalocyanine/multiwalled carbon nanotube interface. Journal of Applied Physics, 2008, 104(3): 033701. [21] UHLíŘOVá T, MOJZEŠ P, MELNIKOVá Z, et al. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: manifestations of two mechanisms of graphene-enhanced Raman scattering. Journal of Raman Spectroscopy, 2017, 48(10): 1270. [22] NGUYEN D, KANG G, CHIANG N, et al.Probing molecular-scale catalytic interactions between oxygen and cobalt phthalocyanine using tip-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2018, 140(18): 5948. [23] ZHOU W, VAVRO J, NEMES N M, et al.Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes. Physical Review B, 2005, 71(20): 205423. [24] EPSTEIN A, WILDI B S.Electrical properties of poly‐copper phthalocyanine. The Journal of Chemical Physics, 1960, 32(2): 324. |