[1] LIU Y, HOU S, WANG X, et al.Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small, 2022, 18(10): 2106875. [2] ZHANG Y, LI S, ZHANG J, et al.Thermoelectrocatalysis: an emerging strategy for converting waste heat into chemical energy. National Science Review, 2024, 11(4): 2207391. [3] CORNETT J, CHEN B, HAIDAR S, et al.Fabrication and characterization of Bi2Te3-based chip-scale thermoelectric energy harvesting devices. Journal of Electronic Materials, 2017, 46: 2844. [4] HONG M, CHEN Z G, YANG L, et al.Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase‐transition temperature and introducing resonant energy doping. Advanced materials, 2018, 30(11): 1705942. [5] CABALLERO‐CALERO O, ARES J R, MARTÍN‐GONZÁLEZ M. Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Advanced Sustainable Systems, 2021, 5(11): 2100095. [6] LIU Y, ZAMANIPOUR Z, VASHAEE D.Economical FeSi2-SiGe composites for thermoelectric power generation. IEEE Green Technologies Conference, 2012: 1-5. [7] KUMAR A, KUMAR M, SINGH R P.Study on electronic, magnetic, optical and thermoelectric properties of manganese oxide (MnO): DFT based spin polarized calculations. Optik, 2021, 241: 167064. [8] ZHENG Y, ZHANG Q, SHI C, et al.Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering. Nature Communications, 2024, 15(1): 7650. [9] SOJO GORDILLO J M, MORATA A, SIERRA C D, et al. Recent advances in silicon-based nanostructures for thermoelectric applications. APL Materials, 2023, 11(4): 040702. [10] SCHIERNING G, STOETZEL J, CHAVEZ R, et al.Silicon‐based nanocomposites for thermoelectric application. physica status solidi (a), 2016, 213(3): 497. [11] DING Y, QIU Y, CAI K, et al.High performance n-type Ag2Se film on Nylon membrane for flexible thermoelectric power generator. Nature Communications, 2019, 10(1): 841. [12] DALVEN R, GILL R.Energy gap in -Ag2Se. Physical Review, 1967, 159(3): 645. [13] SINGH S, HIRATA K, BYEON D, et al.Investigation of thermoelectric properties of Ag2SxSe1-x(x= 0.0, 0.2 and 0.4). Journal of Electronic Materials, 2020, 49: 2846. [14] JOOD P, OHTA M.Temperature-dependent structural variation and Cu substitution in thermoelectric silver selenide. ACS Applied Energy Materials, 2020, 3(3): 2160. [15] LI D, ZHANG J, LI J, et al.High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method. Materials Chemistry Frontiers, 2020, 4(3): 875. [16] KHAN J A, MAITHANI Y, SINGH J.Ag2Se nanorod arrays with ultrahigh room temperature thermoelectric performance and superior mechanical properties. ACS Applied Materials & Interfaces, 2023, 15(29): 35001. [17] CHEN N, SCIMECA M R, PAUL S J, et al.High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template. Nanoscale Advances, 2020, 2(1): 368. [18] ZHOU K, CHEN J, ZHENG R, et al.Non-epitaxial pulsed laser deposition of Ag2Se thermoelectric thin films for near-room temperature applications. Ceramics International, 2016, 42(10): 12490. [19] NAN B, LI M, ZHANG Y, et al.Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials, 2023, 6(5): 2807. [20] JIN M, LIANG J, QIU P, et al.Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method. The Journal of Physical Chemistry Letters, 2021, 12(34): 8246. [21] CHEN J, SUN Q, BAO D, et al.Hierarchical structures advance thermoelectric properties of porous n-type -Ag2Se. ACS Applied Materials & Interfaces, 2020, 12(46): 51523. [22] HSU K F, LOO S, GUO F, et al.Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818. [23] ZHU T, HU L, ZHAO X, et al.New insights into intrinsic point defects in V2VI3 thermoelectric materials. Advanced Science, 2016, 3(7): 1600004. [24] TOBERER E S, MAY A F, SNYDER G J.Zintl chemistry for designing high efficiency thermoelectric materials. Chemistry of Materials, 2010, 22(3): 624. [25] JIANG G, HE J, ZHU T, et al.High performance Mg2 (Si, Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties. Advanced Functional Materials, 2014, 24(24): 3776. [26] TEE S Y, TAN X Y, WANG X, et al.Aqueous synthesis, doping, and processing of n-type Ag2Se for high thermoelectric performance at near-room-temperature. Inorganic Chemistry, 2022, 61(17): 6451. [27] WANG H, LIU X, ZHOU Z, et al.Constructing n-type Ag2Se/CNTs composites toward synergistically enhanced thermoelectric and mechanical performance. Acta Materialia, 2022, 223: 117502. [28] LIANG J, QIU P, ZHU Y, et al.Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system. Research, 2020, 2020: 6591981. [29] GATES B, MAYERS B, WU Y, et al.Synthesis and characterization of crystalline Ag2Se nanowires through a template‐engaged reaction at room temperature. Advanced Functional Materials, 2002, 12(10): 679. [30] DUAN H, LI Y, ZHAO K, et al.Ultra-fast synthesis for Ag2Se and CuAgSe thermoelectric materials. JOM, 2016, 68: 2659. [31] YUE Y, LYU W, LIU W D, et al.Solvothermal synthesis of micro-pillar shaped Ag2Se and its thermoelectric potential. Materials Today Chemistry, 2024, 39: 102183. [32] PALAPORN D, KUROSAKI K, PINITSOONTORN S.Effect of sintering temperature on the thermoelectric properties of Ag2Se fabricated by spark plasma sintering with high compression. Advanced Energy and Sustainability Research, 2023, 4(10): 2300082. [33] IJAZ U, SIYAR M, PARK C.The power of pores: review on porous thermoelectric materials. RSC Sustainability, 2024, 2(4): 852. [34] TIE J, XU G, LI Y, et al.The effect of SPS sintering temperatures on the structure, thermoelectric properties, and scattering mechanism of Cu2Se. Journal of Materials Research and Technology, 2023, 27: 3506. |