无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 306-312.DOI: 10.15541/jim20230316 CSTR: 32189.14.10.15541/jim20230316
所属专题: 【能源环境】热电材料(202409)
收稿日期:
2023-07-13
修回日期:
2023-09-14
出版日期:
2024-03-20
网络出版日期:
2023-10-07
通讯作者:
陈少平, 教授. E-mail: chenshaoping@tyut.edu.cn作者简介:
陈浩(1995-), 男, 硕士研究生. E-mail: chenha024@163.com
基金资助:
CHEN Hao1(), FAN Wenhao2, AN Decheng3, CHEN Shaoping1(
)
Received:
2023-07-13
Revised:
2023-09-14
Published:
2024-03-20
Online:
2023-10-07
Contact:
CHEN Shaoping, professor. E-mail: chenshaoping@tyut.edu.cnAbout author:
CHEN Hao (1995-), male, Master candidate. E-mail: chenha024@163.com
Supported by:
摘要:
作为ⅣA族碲化物, SnTe具有与PbTe相同的晶体结构和相似的双价带结构, 是一种非常有前途的热电材料, 但高温软化和低温热电性能差等问题阻碍了其进一步推广应用。因此, 提升SnTe的平均热电优值, 拓宽服役区间, 有重要的研究意义。能带工程和晶格工程可同时优化功率因子和晶格热导率, 提升SnTe的热电性能。本研究采用MgSe合金化策略, 通过熔炼和放电等离子烧结(SPS)的方法制备了一系列Sn1-yPbyTe-x%MgSe(0.01≤y≤0.05, 0≤x≤6)样品。研究发现, 合金化MgSe可增大能带带隙, 有效抑制本征SnTe在高温段的双极扩散, 使高温Seebeck系数得到提升, 同时声子散射降低了体系晶格热导率, 使高温热电性能(873 K)提升了100%; 掺杂Pb元素可有效调制载流子浓度抑制电子热导率, 从而提升SnTe平均热电性能。其中, Sn0.96Pb0.04Te-4%MgSe样品在873 K的ZT为1.5, 423~873 K的平均ZT达到0.8, 得到了比文献更优异的结果。
中图分类号:
陈浩, 樊文浩, 安德成, 陈少平. 能带优化和载流子调控改善SnTe的热电性能[J]. 无机材料学报, 2024, 39(3): 306-312.
CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation[J]. Journal of Inorganic Materials, 2024, 39(3): 306-312.
图2 SnTe-x%MgSe (0≤x≤6)样品的(a)电导率随温度变化曲线和(b)霍尔载流子浓度及迁移率测试
Fig. 2 (a) Temperature dependent electrical conductivity, and (b) Houle carrier concentration and mobility for SnTe-x%MgSe (0≤x≤6) samples
图3 (a)SnTe和(b)SnTe-4%MgSe的能带结构及(c)SnTe-x%MgSe (0≤x≤6)样品的Seebeck系数随温度变化曲线
Fig. 3 Band structures of (a) SnTe and (b) SnTe-4%MgSe, and (c) temperature dependent Seebeck coefficients of SnTe-x%MgSe (0≤x≤6) samples
图4 SnTe-x%MgSe (0≤x≤6)的热电性能随温度变化曲线
Fig. 4 Temperature dependent thermoelectric properties of SnTe-x%MgSe (0≤x≤6) (a) Power factor; (b) Thermal conductivity and lattice thermal conductivity; (c) Thermoelectric figure of merit (ZT)
图5 Sn1-yPbyTe-4%MgSe (0.01≤y≤0.05)样品的(a)XRD图谱和(b)晶格常数, 以及(c)Sn0.95Pb0.05Te-4%MgSe样品的EDS图谱
Fig. 5 (a) XRD patterns and (b) lattice parameter for Sn1-yPbyTe-4%MgSe (0.01≤y≤0.05) samples, and (c) EDS mappings for the sample Sn0.95Pb0.05Te-4%MgSe
图6 Sn1-yPbyTe-4%MgSe (0.01≤y≤0.05)样品的热电性能
Fig. 6 Thermoelectric properties of Sn1-yPbyTe-4%MgSe samples (0.01≤y≤0.05) (a) Houle carrier concentration and mobility; (b) Electrical conductivity; (c) Seebeck coefficient; (d) Power factor; (e) Average power factor; (f) Electronic thermal conductivity; (g) Total thermal conductivity; (h) Average ZT
Sn1-yPbyTe-x%MgSe | S/(μV·K-1) | σ/(×103, S·cm-1) | PF/(μW·cm-1·K-2) | nH/(×1020, cm-3) | κtot/(W·m-1·K-1) | ZT |
---|---|---|---|---|---|---|
x=0, y=0 | 24 | 7.28 | 4.2 | 4.3 | 8.62 | 0.015 |
x=2, y=0 | 15 | 6.75 | 1.52 | 4.21 | 8.06 | 0.006 |
x=4, y=0 | 17 | 6.2 | 1.79 | 4.31 | 7.68 | 0.007 |
x=6, y=0 | 18 | 6.03 | 1.95 | 4.02 | 7.67 | 0.008 |
x=4, y=0.01 | 18 | 6.87 | 2.23 | 3.84 | 3.74 | 0.018 |
x=4, y=0.02 | 23 | 5.89 | 3.12 | 3.56 | 3.44 | 0.027 |
x=4, y=0.03 | 30 | 5.4 | 4.86 | 3.42 | 3.36 | 0.043 |
x=4, y=0.04 | 32 | 5.2 | 5.32 | 3.2 | 3.27 | 0.049 |
x=4, y=0.05 | 39 | 4.45 | 6.77 | 2.8 | 3.25 | 0.062 |
表1 本研究中所有样品的室温热电性能参数
Table 1 Thermoelectric properties of Sn1-yPbyTe-x%MgSe (0.01≤y≤0.05, 0≤x≤6) at room temperature in this study
Sn1-yPbyTe-x%MgSe | S/(μV·K-1) | σ/(×103, S·cm-1) | PF/(μW·cm-1·K-2) | nH/(×1020, cm-3) | κtot/(W·m-1·K-1) | ZT |
---|---|---|---|---|---|---|
x=0, y=0 | 24 | 7.28 | 4.2 | 4.3 | 8.62 | 0.015 |
x=2, y=0 | 15 | 6.75 | 1.52 | 4.21 | 8.06 | 0.006 |
x=4, y=0 | 17 | 6.2 | 1.79 | 4.31 | 7.68 | 0.007 |
x=6, y=0 | 18 | 6.03 | 1.95 | 4.02 | 7.67 | 0.008 |
x=4, y=0.01 | 18 | 6.87 | 2.23 | 3.84 | 3.74 | 0.018 |
x=4, y=0.02 | 23 | 5.89 | 3.12 | 3.56 | 3.44 | 0.027 |
x=4, y=0.03 | 30 | 5.4 | 4.86 | 3.42 | 3.36 | 0.043 |
x=4, y=0.04 | 32 | 5.2 | 5.32 | 3.2 | 3.27 | 0.049 |
x=4, y=0.05 | 39 | 4.45 | 6.77 | 2.8 | 3.25 | 0.062 |
图7 本研究中Sn0.96Pb0.04Te-4%MgSe与文献报导的SnTe热电性能比较[3,10,12,17,26,32,35⇓⇓⇓ -39]
Fig. 7 Thermoelectric property comparison of Sn0.96Pb0.04Te- 4%MgSe in this work with corresponding materials in literature[3,10,12,17,26,32,35⇓⇓⇓ -39]
[1] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105.
DOI PMID |
[2] | 陈立东, 王群, 李小亚. 环境友好型能源技术—热电转换技术. 中国科技成果, 2005, (13): 34. |
[3] | AN D, WANG J, ZHANG J, et al. Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics. Energy & Environmental Science, 2021, 14(10): 5469. |
[4] |
LIU W, JIE Q, KIM H S, et al. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Materialia, 2015, 87: 357.
DOI URL |
[5] |
YOON J S, SONG J M, RAHMAN J U, et al. High thermoelectric performance of melt-spun CuxBi0.5Sb1.5Te3 by synergetic effect of carrier tuning and phonon engineering. Acta Materialia, 2018, 158: 289.
DOI URL |
[6] |
LU W, HE T, LI S, et al. Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared via a green and facile hydrothermal method. Nanoscale, 2020, 12(10): 5857.
DOI URL |
[7] |
PEI Y, WANG H, SNYDER G J. Band engineering of thermoelectric materials. Advanced Materials, 2012, 24(46): 6125.
DOI URL |
[8] |
SUN P, KUMAR K R, LYU M, et al. Generic Seebeck effect from spin entropy. The Innovation, 2021, 2(2): 100101.
DOI URL |
[9] |
ZOU T, QIN X, ZHANG Y, et al. Enhanced thermoelectric performance of beta-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5: 17803.
DOI |
[10] |
XIE G, LI Z, LUO T, et al. Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with strong lattice softening. Nano Energy, 2020, 69: 104395.
DOI URL |
[11] |
CHEN L, SHI X, QIU P, et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021, 36(4): 347.
DOI |
[12] |
ZHANG Q, GUO Z, WANG R, et al. High-performance thermoelectric material and module driven by medium-entropy engineering in SnTe. Advanced Functional Materials, 2022, 32(35): 2205458.
DOI URL |
[13] |
TAN G, SHI F, SUN H, et al. SnTe-AgBiTe2 as an efficient thermoelectric material with low thermal conductivity. Journal of Materials Chemistry A, 2014, 2(48): 20849.
DOI URL |
[14] | HE W, LI N, WANG H, et al. Multiple effects promoting the thermoelectric performance of SnTe by alloying with CuSbTe2 and CuBiTe2. ACS Applied Materials & Interfaces, 2021, 13(44): 52775. |
[15] |
TAN G, SHI F, HAO S, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. Journal of the American Chemical Society, 2015, 137(35): 11507.
DOI PMID |
[16] |
WU G, GUO Z, ZHANG Q, et al. Refined band structure plus enhanced phonon scattering realizes thermoelectric performance optimization in CuI-Mn codoped SnTe. Journal of Materials Chemistry A, 2021, 9(22): 13065.
DOI URL |
[17] |
BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chemistry of Materials, 2015, 27(2): 581.
DOI URL |
[18] |
TAN G, ZHAO L D, SHI F, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. Journal of the American Chemical Society, 2014, 136(19): 7006.
DOI URL |
[19] |
AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys. Chemistry of Materials, 2015, 28(1): 376.
DOI URL |
[20] |
TAN X F, DUAN S C, WANG H X, et al. Multi-doping in SnTe: improvement of thermoelectric performance due to lower thermal conductivity and enhanced power factor. Journal of Inorganic Materials, 2019, 34(3): 335.
DOI URL |
[21] |
TAN G, ZEIER W G, SHI F, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering. Chemistry of Materials, 2015, 27(22): 7801.
DOI URL |
[22] |
ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band. Physical Chemistry Chemical Physics, 2014, 16(38): 20741.
DOI PMID |
[23] | BANIK A, VISHAL B, PERUMAL S, et al. The origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy & Environmental Science, 2016, 9(6): 2011. |
[24] |
SHENOY U S, BHAT D K. Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT. Journal of Materials Chemistry C, 2020, 8(6): 2036.
DOI URL |
[25] |
ALLAOUI I, BENYOUSSEF A, EL KENZ A. Two-dimensional SnTe/Sb van der Waals heterostructure for photovoltaic application. Solid State Sciences, 2021, 121: 106736.
DOI URL |
[26] |
WANG D, ZHANG X, YU Y, et al. Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and thermal transport properties. Journal of Alloys and Compounds, 2019, 773: 571.
DOI URL |
[27] |
GUO C, WANG D, ZHANG X, et al. One-one correspondence between n-type SnTe thermoelectric and topological phase transition. Chemistry of Materials, 2022, 34(7): 3423.
DOI URL |
[28] |
TANG J, GAO B, LIN S, et al. Manipulation of band structure and interstitial defects for improving thermoelectric SnTe. Advanced Functional Materials, 2018, 28(34): 1803586.
DOI URL |
[29] |
KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Computational Materials Science, 1996, 6(1): 15.
DOI URL |
[30] |
PERDEW J P, BURKE K, E M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865.
DOI PMID |
[31] |
BLÖCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24): 17953.
DOI PMID |
[32] |
TANG J, YAO Z, CHEN Z, et al. Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Materials Today Physics, 2019, 9: 100091.
DOI URL |
[33] |
LITTLEWOOD P B, MIHAILA B, SCHULZE R K, et al. Band structure of SnTe studied by photoemission spectroscopy. Physical Review Letters, 2010, 105(8): 086404.
DOI URL |
[34] |
MUTHAIAH R, GARG J. Thermal conductivity of magnesium selenide (MgSe)-a first principles study. Computational Materials Science, 2021, 198: 110679.
DOI URL |
[35] |
ROYCHOWDHURY S, SHENOY U S, WAGHMARE U V, et al. An enhanced seebeck coefficient and high thermoelectric performance in p-type In and Mg co-doped Sn1-xPbxTe via the co-adjuvant effect of the resonance level and heavy hole valence band. Journal of Materials Chemistry C, 2017, 5(23): 5737.
DOI URL |
[36] |
BANIK A, BISWAS K. Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe1-xSex system. Journal of Materials Chemistry A, 2014, 2(25): 9620.
DOI URL |
[37] |
FU T, XIN J, ZHU T, et al. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying. Science Bulletin, 2019, 64(14): 1024.
DOI PMID |
[38] | LIU X, ZHANG B, CHEN Y, et al. Achieving enhanced thermoelectric performance in (SnTe)1-x(Sb2Te3)x and (SnTe)1-y (Sb2Se3)y synthesized via solvothermal reaction and sintering. ACS Applied Materials & Interfaces, 2020, 12(40): 44805. |
[39] |
BHAT D K, SHENOY U S. SnTe thermoelectrics: dual step approach for enhanced performance. Journal of Alloys and Compounds, 2020, 834: 155181.
DOI URL |
[1] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[2] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[3] | 孟雨婷, 王雪梅, 章淑娴, 陈志炜, 裴艳中. Bi2Te3基热电材料的单带和双带传输特性转变[J]. 无机材料学报, 2024, 39(11): 1283-1291. |
[4] | 苏浩健, 周敏, 李来风. 多元素掺杂优化SnTe的热电性能[J]. 无机材料学报, 2024, 39(10): 1159-1166. |
[5] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[6] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[7] | 李建波, 田震, 蒋全伟, 于砺锋, 康慧君, 曹志强, 王同敏. 不同元素掺杂对CaTiO3微观结构及热电性能的影响[J]. 无机材料学报, 2023, 38(12): 1396-1404. |
[8] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
[9] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[10] | 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋. Ge掺杂MnTe材料的热电输运性能[J]. 无机材料学报, 2022, 37(2): 209-214. |
[11] | 金敏, 白旭东, 张如林, 周丽娜, 李荣斌. 区熔法制备金属硫化物Ag2S及其热电性能研究[J]. 无机材料学报, 2022, 37(1): 101-106. |
[12] | 张岑岑, 王雪, 彭良明. 基于分步式双重调控n型(PbTe)1-x-y(PbS)x(Sb2Se3)y体系的热电传输特性[J]. 无机材料学报, 2021, 36(9): 936-942. |
[13] | 杨青雨, 仇鹏飞, 史迅, 陈立东. 熵工程在热电材料中的应用[J]. 无机材料学报, 2021, 36(4): 347-354. |
[14] | 蔡剑锋, 王泓翔, 刘国强, 蒋俊. 热电材料中的高熵结构设计[J]. 无机材料学报, 2021, 36(4): 399-404. |
[15] | 曾凡鑫, 刘创, 曹余良. 去合金化制备具有高循环稳定性的纳米多孔Sb/MCNT储钠负极材料[J]. 无机材料学报, 2021, 36(11): 1137-1144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||