无机材料学报

• •    

Ce0.9Fe3CoSb12薄膜的磁控溅射制备及其热电与传感性能

葛烨明1, 汤哲1, 刘苗1, 娄四泽1, 刘振国2, 周岩3, 万舜4, 宗鹏安1   

  1. 1.南京工业大学 材料科学与工程学院, 南京 211800;
    2.西北工业大学宁波研究院 浙江省柔性电子重点实验室, 宁波 315103;
    3.南京师范大学 物理科学与技术学院, 南京 211046;
    4.乌镇实验室, 桐乡 314500
  • 收稿日期:2025-04-01 修回日期:2025-06-05
  • 通讯作者: 宗鹏安, 副教授. E-mail: pazong@njtech.edu.cn; 万 舜,副研究员. E-mail: wans@wuzhenlab.com
  • 作者简介:葛烨明(2000-), 男, 硕士研究生. E-mail: 202261103011@njtech.edu.cn
  • 基金资助:
    国家自然科学基金NSAF联合基金(U2230131)

Fabrication and Thermoelectric Performance of Ce0.9Fe3CoSb12 Thin Films via Magnetron Sputtering for Flexible Thermoelectric and Sensing Applications

GE Yeming1, TANG Zhe1, LIU Miao1, LOU Size1, LIU Zhenguo2, ZHOU Yan3, WAN Shun4, ZONG Peng'an1   

  1. 1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China;
    2. Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China;
    3. School of Physics and Technology, Nanjing Normal University, Nanjing 211046, China;
    4. Wuzhen Laboratory, Tongxiang 314500, China
  • Received:2025-04-01 Revised:2025-06-05
  • Contact: ZONG Peng'an, associate professor. E-mail: pazong@njtech.edu.cn; WAN Shun, associate professor. E-mail: wans@wuzhenlab.com
  • About author:Ge Yeming (2000–), male, Master candidate. E-mail: 202261103011@njtech.edu.cn
  • Supported by:
    Joint Funds of the National Natural Science Foundation of China NSAF (U2230131)

摘要: CoSb3基方钴矿材料因其生态友好性、热稳定性及优异的热电性能,被广泛应用于热电器件。相比于n型方钴矿热电薄膜,目前对于高热电性能的p型填充方钴矿柔性热电薄膜的研究尚不充分,尤其是在柔性器件方面。本研究基于磁控溅射技术在玻璃基底上制备了p型Ce0.9Fe3CoSb12薄膜,研究了不同溅射功率对薄膜成分、微观结构及热电性能的影响。研究结果表明,随着溅射功率(100~120 W)的增加,Ce/Fe元素含量比逐渐下降,空穴浓度随之提升,导致薄膜电导率σ上升,泽贝克系数S下降。其中110 W溅射功率制备的薄膜表现出最优的热电性能,其室温功率因子(PF)达到76.7 μW∙m-1∙K-2,随着温度的升高,在500 K下其PF提升到103.5 μW∙m-1∙K-2。基于此,本研究进一步利用柔性聚酰亚胺(PI)作为基底,溅射时采用基板加热增强薄膜与基底之间的界面结合,制备了柔性p型方钴矿薄膜,并集成了薄膜热电发电器,探究了其在温度传感器领域的应用。测试表明,该器件在温度传感等领域具有良好的应用前景。

关键词: 热电, CoSb3, 薄膜, 磁控溅射, 热电传感器

Abstract: Skutterudite-based CoSb3 materials have attracted significant attention in thermoelectric applications due to their environmental friendliness, thermal stability, and excellent thermoelectric properties. While considerable progress has been made in the development of n-type skutterudite thermoelectric thin films, research on high-performance p-type filled skutterudite flexible thin films remains limited, particularly in the context of flexible device integration. In this work, p-type Ce0.9Fe3CoSb12 thin films were deposited on glass substrates via radio frequency magnetron sputtering, and the influence of sputtering power (100-120 W) on the film composition, microstructure, and thermoelectric properties was systematically investigated. The results reveal that increasing the sputtering power leads to a gradual decrease in the Ce/Fe atomic ratio and a corresponding increase in hole concentration, which enhances the electrical conductivity (σ) but reduces the Seebeck coefficient (S). The film deposited at 110 W exhibited the highest thermoelectric performance, achieving a power factor (PF) of 76.7 μW·m-1∙K-2 at room temperature and reaching 103.5 μW·m-1∙K-2 at 500 K. Building upon these findings, flexible Ce0.9Fe3CoSb12 films were further fabricated on polyimide (PI) substrates with substrate heating applied during deposition to improve interfacial adhesion. A flexible thin-film thermoelectric generator was successfully integrated, and its potential application in temperature sensing was evaluated. The device demonstrated excellent mechanical flexibility and reliable thermal sensing performance, highlighting its promise for use in flexible thermoelectric sensor technologies.

Key words: thermoelectric, CoSb3, thin film, magnetron sputtering, thermoelectric sensor

中图分类号: